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If you find errors or omissions in this document, please don’t hesitate to submit an
issue or open a pull request with a fix. We also encourage you to ask questions and
discuss any aspects of the project on the mailing list or in the chat room. New
contributors are always welcome!

This manual assumes you are using Asciidoctor to produce and convert your document. Asciidoctor
implements more syntax, attributes and functions than the legacy AsciiDoc.py processor. Migrating
from AsciiDoc Python lists which features are available to the Asciidoctor and AsciiDoc processors.
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Chapter 1. What is Asciidoctor?
Asciidoctor is a fast text processor and publishing toolchain for converting AsciiDoc content to
HTML5, EPUB3, PDF, DocBook 5 (or 4.5) slidedecks and other formats. Asciidoctor is written in
Ruby, packaged as a RubyGem and published to RubyGems.org. The gem is also packaged in several
Linux distributions, including Fedora, Debian and Ubuntu. Asciidoctor is open source, hosted on
GitHub, and released under the MIT license.

1.1. The Big Picture
Asciidoctor reads content written in plain text, as shown in the panel on the left in the image below,
and converts it to HTML5, as shown rendered in the right panel. Asciidoctor adds a default
stylesheet to the HTML5 document, as shown, to provide a pleasant out-of-the-box experience.

1.2. Asciidoctor on the JVM
You can run Asciidoctor on the JVM using JRuby. You can also use AsciidoctorJ to invoke
Asciidoctor’s APIs from Java and other JVM languages.

1.3. Asciidoctor.js
Asciidoctor can be used in JavaScript. Opal is used to transcompile the code from Ruby to JavaScript
to make Asciidoctor.js, which can be used wherever JavaScript runs, such as in a web browser or on
Node.js.

1.4. Asciidoctor’s Most Notable Benefits
While Asciidoctor aims to offer full compliance with the AsciiDoc syntax, it’s more than just a clone.

Built-in and custom templates

Asciidoctor uses a set of built-in ERB templates to generate HTML 5 and DocBook output that is
structurally equivalent to what AsciiDoc produces. Any of these templates can be replaced by a
custom template written in any template language available in the Ruby ecosystem. Custom
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template rendering is handled by the Tilt template abstraction library. Tilt is one of the most
popular gems in the Ruby ecosystem.

Parser and object model

Leveraging the Ruby stack isn’t the only benefit of Asciidoctor. Unlike the AsciiDoc Python
implementation, Asciidoctor parses and converts the source document in discrete steps. This makes
conversion optional and gives Ruby programs the opportunity to extract, add or replace
information in the document by interacting with the document object model Asciidoctor assembles.
Developers can use the full power of the Ruby programming language to play with the content in
the document.

Performance and security

No coverage of Asciidoctor would be complete without mention of its speed. Despite not being an
original goal of the project, Asciidoctor has proven startlingly fast. It loads, parses, and converts
documents a 100 times as fast as the Python implementation. That’s good news for developer
productivity and good news for GitHub or any server-side application that needs to render AsciiDoc
markup. Asciidoctor also offers several levels of security, further justifying its suitability for server-
side deployments.

Beyond Ruby

Asciidoctor’s usage is not limited to the Ruby community. Thanks to JRuby, a port of Ruby to the
JVM, Asciidoctor can be used inside Java applications as well. Plugins are available for Apache
Maven, Gradle, and Rewrite. These plugins are based on the AsciidoctorJ for Asciidoctor.

Asciidoctor also ships with a command line interface (CLI). The Asciidoctor CLI, asciidoctor, is a
drop-in replacement for the asciidoc.py script from the AsciiDoc Python distribution.

1.4.1. AsciiDoc Syntax Processing

Asciidoctor reads and parses text written in the AsciiDoc syntax, then feeds the parse tree into a set
of built-in templates to produce HTML5, PDF, DocBook 5, etc. You have the option of writing your
own converter or providing Tilt-supported templates to customize the generated output or produce
alternative formats.


Asciidoctor is a drop-in replacement for the original AsciiDoc Python processor
(asciidoc.py). The Asciidoctor test suite has > 1,500 tests to ensure compatibility
with the AsciiDoc syntax.

In addition to the standard AsciiDoc syntax, Asciidoctor recognizes additional markup and
formatting options, such as font-based icons (e.g., icon:fire[]) and UI elements (e.g., btn:[Save]).
Asciidoctor also offers a modern, responsive theme based on Foundation to style the HTML5
output.

1.5. Compared to Markdown
The most compelling reason to choose a lightweight markup language for writing is to minimize the
number of technical concepts an author must grasp in order to be immediately productive. In other
words, the goal is to be able to write without friction.
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1.5.1. Getting your start with Markdown

The defacto lightweight markup language is Markdown. (At least, that’s what you call it at first). The
main advantage of Markdown lies in its primitive syntax: its manual and cheatsheet are one and
the same. But this advantage is also its greatest weakness.

As soon as authors need something slightly more complex than basic prose (e.g., tables, cross
references, footnotes, embedded YouTube videos, etc.), they find themselves resorting to embedded
HTML or seeking out more feature-rich implementations. Markdown has become a maze of
different implementations, termed “flavors”, which make a universal definition evasive.


The IETF has declared “there is no such thing as "invalid" Markdown.” See This Is
Markdown! Or: Markup and Its Discontents.

Here’s how the story inevitably goes. You start out with Markdown. Then it’s Markdown + X. Then
Markdown + X + Y. And down the rabbit hole you go. What’s worse, X and Y often require you to
sprinkle in HTML, unnecessarily coupling content with presentation and wrecking portability. Your
instinct to choose Markdown is good. There are just better options.

1.5.2. Graduating to AsciiDoc

AsciiDoc presents a more sound alternative. The AsciiDoc syntax is more concise than (or at least as
concise as) Markdown. At the same time, AsciiDoc offers power and flexibility without requiring
the use of HTML or “flavors” for essential syntax such as tables, description lists, admonitions (tips,
notes, warnings, etc.) and table of contents.

It’s important to understand that AsciiDoc was initially designed as a plain-text alternative to the
DocBook XML schema. AsciiDoc isn’t stuck in a game of whack-a-mole trying to satisfy publishing
needs like Markdown. Rather, the AsciiDoc syntax was explicitly designed with the needs of
publishing in mind, both print and web. If the need arises, you can make full use of the huge choice
of tools available for a DocBook workflow using Asciidoctor’s DocBook converter. That’s why
mapping to an enterprise documentation format like DocBook remains a key use case for AsciiDoc.

And yet, AsciiDoc is simple enough to stand in as a better flavor of Markdown. But what truly
makes AsciiDoc the right investment is that its syntax was designed to be extended as a core
feature. This extensibility not only means that AsciiDoc has a lot more to offer, with room to grow, it
also fulfills the objective of ensuring your content is maximally reusable.

1.5.3. Comparison by example

The following table shows the AsciiDoc syntax as it compares to Markdown. Since AsciiDoc
supports a broader range of syntax than Markdown, this side-by-side comparison focuses mainly
on areas where the syntax overlaps.

A selection of AsciiDoc language features compared to Markdown
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Language
Feature

Markdown AsciiDoc

Bold
(constrained
)

**bold** *bold*

Bold
(unconstrain
ed)

**b**old **b**old

Italic
(constrained
)

*italic* _italic_

Italic
(unconstrain
ed)

n/a
__i__talic

Monospace
(constrained
)

`monospace` `monospace`

Monospace
(unconstrain
ed)

`m`onospace ``m``onospace

Link with
label [AsciiDoc](http://asciidoc.org) http://asciidoc.org[AsciiDoc]

Relative link
[user guide](user-guide.html) link:user-guide.html[user guide]

xref:user-guide.adoc[user guide]

File link
[get the PDF]({% raw %}{{
site.url }}{% endraw
%}/assets/mydoc.pdf)

link:{site-
url}/assets/mydoc.pdf[get the
PDF]

Cross
reference See [Usage](#_usage).

<h2 id="_usage">Usage</h2>

See <<_usage>>.

== Usage

Block ID /
anchor <h2 id="usage">Usage</h2> [#usage]

== Usage
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Language
Feature

Markdown AsciiDoc

Inline
anchor

n/a
. [[step-1]]Download the software

Inline image
w/ alt text ![Logo](/images/logo.png) image:logo.png[Logo]

Block image
w/ alt text

n/a
image::logo.png[Logo]

Section
heading* ## Heading 2 == Heading 2

Blockquote*
> Quoted text.
>
> Another paragraph in quote.

____
Quoted text.

Another paragraph in quote.
____

Literal block
    $ gem install asciidoctor

Indented (by 1 or more spaces)

 $ gem install asciidoctor

Delimited

....
$ gem install asciidoctor
....

Code block*
```java
public class Person {
  private String name;
  public Person(String name) {
    this.name = name;
  }
}
```

[source,java]
----
public class Person {
  private String name;
  public Person(String name) {
    this.name = name;
  }
}
----
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Language
Feature

Markdown AsciiDoc

Unordered
list * apples

* orange
  * temple
  * navel
* bananas

* apples
* oranges
** temple
** navel
* bananas

Ordered list
1. first
2. second
3. third

. first

. second

. third

Thematic
break (aka
horizontal
rule)*

***

* * *

---

- - -

___

_ _ _

'''

Typographic
quotes (aka
“smart
quotes”)

Enabled through an extension switch, but
offer little control in how they are
applied.

The `'90s popularized a new form
of music known as "`grunge`"
rock.
Its influence extended well
beyond music.

Document
header

Slapped on as “front matter”

---
layout: docs
title: Writing posts
prev_section: defining-
frontmatter
next_section: creating-pages
permalink: /docs/writing-posts/
---

Native support!

= Writing posts
:awestruct-layout: base
:showtitle:
:prev_section: defining-
frontmatter
:next_section: creating-pages
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Language
Feature

Markdown AsciiDoc

Admonitions n/a
TIP: You can add line numbers to
source listings by adding the
word `numbered` in the attribute
list after the language name.

Sidebars n/a
.Lightweight Markup
****
Writing languages that let you
type less and express more.
****

Block titles n/a
.Grocery list
* Milk
* Eggs
* Bread

Includes n/a
include::intro.adoc[]

URI
reference Go [Home][home].

[home]: https://example.org

:home: https://example.org

Go {home}[Home].

Custom CSS
classes

n/a
[.path]_Gemfile_

* Asciidoctor also supports the Markdown syntax for this language feature.

You can see that AsciiDoc has the following advantages over Markdown:

• AsciiDoc uses the same number of markup characters or less when compared to Markdown in
nearly all cases.

• AsciiDoc uses a consistent formatting scheme (i.e., it has consistent patterns).

• AsciiDoc can handle all permutations of nested inline (and block) formatting, whereas
Markdown often falls down.

• AsciiDoc handles cases that Markdown doesn’t, such as a proper approach to inner-word
markup, source code blocks and block-level images.
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Certain Markdown flavors, such as Markdown Extra, support additional features
such as tables and description lists. However, since these features don’t appear in
“plain” Markdown, they’re not included in the comparison table. But they’re
supported natively by AsciiDoc.

Asciidoctor, which is used for converting AsciiDoc on GitHub and GitLab, emulates “the good parts”
of the Markdown syntax, like headings, blockquotes and fenced code blocks, making migration
from Markdown to AsciiDoc fairly simple. For details about migration, see Markdown
Compatibility.

To read more about the shortcomings of Markdown, see these opinion pieces:

• Why You Shouldn’t Use “Markdown” for Documentation

• Markdown Considered Harmful

• Sundown on Markdown?

10

https://asciidoctor.org/docs/asciidoc-syntax-quick-reference/#markdown-compatibility
https://asciidoctor.org/docs/asciidoc-syntax-quick-reference/#markdown-compatibility
http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/
https://medium.com/@bbirdiman/markdown-considered-harmful-495ccfe24a52
https://www.simple-talk.com/blogs/2014/02/28/sundown-on-markdown/


Quick Starts

11



Chapter 2. Using the Command Line
Interface
Asciidoctor’s command line interface (CLI) is a drop-in replacement for the asciidoc.py command
from the Python implementation.

If the Asciidoctor gem installed successfully, the asciidoctor command line interface (CLI) will be
available on your PATH. To confirm that Asciidoctor is available, execute:

$ asciidoctor --version

The following information should be output in your terminal:

Asciidoctor 1.5.6.2 [https://asciidoctor.org]

To invoke Asciidoctor from the CLI and convert an .adoc file, execute:

$ asciidoctor <asciidoc_file>

This will use the built-in defaults for options and create a new file in the same directory as the
input file, with the same base name, but with the .html extension.

There are many other options available, listed in CLI Options.

Full help is provided in the man page or via:

$ asciidoctor --help

There is also an asciidoctor-safe command, which turns on safe mode by default, preventing
access to files outside the parent directory of the source file. This mode is very similar to the safe
mode of asciidoc.py.
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Chapter 3. Using the Ruby API
In addition to the command line interface, Asciidoctor provides a Ruby API. The API is intended for
integration with other software projects and is suitable for server-side applications, such as Rails,
Sinatra and GitHub.

Asciidoctor also has a Java API that mirrors the Ruby API. The Java API calls through to the Ruby
API using an embedded JRuby runtime. See the AsciidoctorJ project for more information.

To use Asciidoctor in your application, you first need to require the gem:

require 'asciidoctor'

This statement makes all of the public APIs in Asciidoctor available to your script or application.
You are now ready to start processing AsciiDoc documents.

The main entry points in the Asciidoctor API are the static methods to load or convert AsciiDoc
documents, which we’ll cover the next two chapters.

To parse a file into an Asciidoctor::Document object:

doc = Asciidoctor.load_file 'mysample.adoc'

You can get information about the document:

puts doc.doctitle
puts doc.attributes

More than likely, you will want to convert the document. To convert a file containing AsciiDoc
markup to HTML 5, use:

Asciidoctor.convert_file 'mysample.adoc'

The command will output to the file mysample.html in the same directory.

You can convert the file to DocBook 5.0 by setting the :backend option to 'docbook':

Asciidoctor.convert_file 'mysample.adoc', backend: 'docbook'

The command will output to the file mysample.xml in the same directory. If you’re on Linux, you
can view the file using Yelp.

You can also use the API to convert strings and load custom templates.
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Chapter 4. System Requirements
Asciidoctor works on Linux, macOS and Windows.

Asciidoctor requires one of the following implementations of Ruby:

• Ruby 1.8.7

• Ruby 1.9.3

• Ruby 2 (2.0.0 or better)

• JRuby 1.7 (Ruby 1.8 and 1.9 modes)

• JRuby 9000

• Rubinius 2.0 (Ruby 1.8 and 1.9 modes)

• Opal (Javascript)

We expect Asciidoctor to work with other versions of Ruby as well. We welcome your help testing
those versions if you are interested in seeing them supported.
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Chapter 5. Installing the Asciidoctor Ruby
Gem
Asciidoctor can be installed using the gem command, Bundler or a Linux package manager.

5.1. Install using gem
To install Asciidoctor using the gem command:

1. Open a terminal

2. Type the following gem command

$ gem install asciidoctor

If the Asciidoctor gem installed successfully, the asciidoctor command line interface (CLI) will be
available on your PATH. To confirm that Asciidoctor is available, execute:

$ asciidoctor --version

The following output should appear in your terminal:

Asciidoctor 1.5.6.2 [https://asciidoctor.org]
Runtime Environment (ruby 2.3.0p0 [x86_64-linux]) (lc:UTF-8 fs:UTF-8 in:- ex:UTF-8)

5.2. Install using Bundler
To install Asciidoctor for a project using Bundler:

1. Open your project’s Gemfile

2. Add the asciidoctor gem using:

gem 'asciidoctor'

3. Save the Gemfile

4. Open a terminal

5. Install the gem using the bundle command:

$ bundle
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5.3. Install on Fedora
To install Asciidoctor on Fedora (or RHEL via EPEL) using the rubygem-asciidoctor package:

1. Open a terminal

2. Run the installation command on Fedora:

$ sudo dnf install asciidoctor

The benefit of installing the gem using this method is that the package manager will also install
Ruby and RubyGems if not already on your machine.

5.4. Install on Debian or Ubuntu
To install Asciidoctor on Debian or Ubuntu:

1. Open a terminal

2. Type the following apt-get command using sudo:

$ sudo apt-get install asciidoctor

The benefit of installing the gem via apt-get is that the package manager will also install Ruby and
RubyGems if not already on your machine.

5.5. Install on Alpine Linux
To install Asciidoctor on Alpine Linux using the asciidoctor package:

1. Open a terminal

2. Type the following apk command using sudo:

$ sudo apk add asciidoctor

The benefit of installing the gem via apk is that the package manager will also install Ruby and
RubyGems if not already on your machine.
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Chapter 6. Upgrading the Asciidoctor Ruby
Gem
If you have an earlier version of Asciidoctor installed, you can update the gem using the gem
command:

$ gem update asciidoctor



If you accidentally use gem install instead of gem update, then you’ll end up with
both versions installed. To remove the older version, use the following gem
command:

$ gem cleanup asciidoctor

On Fedora, you can update the package using:

$ sudo dnf update asciidoctor


Your Fedora system may be configured to automatically update packages, in which
case no further action is required by you. Refer to the Fedora docs if you are
unsure.

On Debian or Ubuntu, you can update the package using:

$ sudo apt-get upgrade asciidoctor

On Alpine Linux, you can update the package using:

$ sudo apk add --upgrade asciidoctor


The Linux packages may not be available right away after a release of the gem. It
may take several weeks for the packages to be updated. If you need to upgrade to
the latest version immediately, use the gem install option documented above.
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Chapter 7. Extensions and Integrations
See Extensions.
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Terms and Concepts
All of the content in an Asciidoctor document, including lines of text, predefined styles, and
processing commands, is classified as either a block or an inline element. Within each of these
elements are an array of styles, options, and functions that can be applied to your content.

This section will provide you with an overview of what each of these elements and sub-elements
are and the basic syntax and rules for using them.
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Chapter 8. Elements
One or more lines of text in a document are defined as a block element. Block elements can be
nested within block elements.

A document can include the following block elements:

• Header

• Title

• Author Info

• First Name

• Middle Name

• Last Name

• Email Address

• Revision Info

• Revision Number

• Revision Date

• Revision Remark

• Attribute Entry

• Preamble

• Section Title

• Section Body

• BlockId

• Block Title

• Block Macro

• Block

• Paragraph

• Delimited Block

• Table

• List

• Bulleted List

• Numbered List

• Description List

• Callout List

• List Entry

• List Label

21



• List Item

• Item Text

• List Paragraph

• List Continuation

An inline element performs an operation on a subset of the content within a block element.

Inline elements include:

• Quotes

• Replacements

• Special characters

• Special words

• Attribute references

• Inline macros
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Chapter 9. Formatting Marks
There are two categories of formatting marks for applying styles (i.e., formatting) to text,
constrained and unconstrained. These formatting marks are referred to as quotes in the AsciiDoc
syntax. This section covers their purpose, their differences and how to apply them.

9.1. Constrained quotes
In short, “constrained” means around a word or sequence of words.

Constrained quotes are single characters (often symbols) placed around a word. The “around” is
defined by the fact that word characters do not appear immediately outside the enclosing marks.

You use this form to format a word that stands alone,

When the word stands alone

That is *strong* stuff!

to format a sequence of words,

When there are multiple words

That is *really strong* stuff!

or to format a word adjacent to punctuation, like an exclamation mark.

When the word is adjacent to punctuation

This stuff sure is *strong*!

9.2. Unconstrained quotes
In short, “unconstrained” means anywhere, including within a word.

Unconstrained quotes are repeated characters (often symbols) placed anywhere in the text,
including within a word. The “within” is defined by the fact that a word character may appear
directly outside one of the enclosing marks.

Unconstrained formatting

She spells her name with an "`h`", as in Sara**h**.

9.3. When should I use unconstrained quotes?
Consider the following questions:
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• Is there a letter, number, underscore directly outside the formatting marks (on either side)?

• Is there a colon, semi-colon, or closing curly bracket directly before the starting formatting
mark?

• Is there a space directly inside of the formatting mark?

If you answered “yes” to any of these questions, you need to switch to unconstrained (double
formatting) quotes.

To help you determine whether a particular syntax pattern requires unconstrained quotes,
consider the following scenarios:

Constrained or Unconstrained?

AsciiDoc Result Quote type Reason

Sara__h__ Sarah Unconstrained The a is directly
adjacent to (the left of)
a formatting mark.

**B**old Bold Unconstrained The o is directly
adjacent to (the right
of) a formatting mark.

&ndash;**2016** &ndash;<strong>2016</
strong>

Unconstrained ; is directly adjacent to
(the left of) a
formatting mark.

** bold ** bold Unconstrained There are spaces
directly inside the
formatting marks.

*2016*&ndash; <strong>2016</strong>
&ndash;

Constrained The adjacent & is not a
letter, number,
underscore, colon, or
semi-colon.

*9*-to-*5* 9-to-5 Constrained The adjacent hyphen is
not a letter, number,
underscore, colon, or
semi-colon.

9.4. Unconstrained formatting edge cases
There are cases when it might seem logical to use constrained quotes, however unconstrained
quotes are required. This happens because of the way the Asciidoctor parser (and the AsciiDoc
Python parser) currently handles substitutions.

Substitutions may be applied by the parser before getting to the formatting marks, in which case
the characters adjacent to those marks may not be what you see in the original source.

One such example is enclosing a monospaced phrase (i.e., codespan) inside typographic quotation
marks, such as “endpoints”. Here’s how you would enter that:
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A monospaced phrase inside typographic quotes

"```endpoints```"

You might start with the following syntax:

"`endpoints`"

That only gives you “endpoints”, though. The backticks contribute to making the typographic
quotes.

Adding another set of backticks isn’t enough because the phrase now calls for unconstrained
formatting marks. As a result, the parser ignores the inner set of backticks and instead interprets
them as literal characters.

"``endpoints``"

So you have to unconstrained monospace inside the typographic quotes (three sets of backticks in
total) to coerce the parser into formatting the phrase as monospace.

"```endpoints```"

Although more rare, if what you’re after is to surround the monospaced phrase with normal double
quotes, such as "endpoints", then you need to interrupt the typographic quote syntax by applying a
role to monospaced phrase or escaping the typographic quote. For example:

A monospaced phase inside normal quotes

"[.code]``endpoints``" or \"``endpoints``"

Another example is a possessive, monospaced phrase that ends in an “s”. In this case, you must
switch the monospaced phrase to unconstrained formatting.

The ``class```' static methods make it easy to operate on files and directories.

Rendered possessive, monospaced phrase

The class’ static methods make it easy to operate on files and directories.

Alternately, you could encode the typographic apostrophe directly in the AsciiDoc source to get the
same result without the need to use unconstrained formatting.
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The `class`’ static methods make it easy to operate on files and directories.


This situation may improve in the future when Asciidoctor is switched to using a
parsing expression grammar for inline formatting instead of the current regular
expression-based strategy. For details, follow issue #61.

9.5. Escaping unconstrained quotes
Unconstrained quotes are meant to match anywhere in the text, context free. However, that means
you catch them formatting when you don’t intend them to. Admittedly, these symbols are a bit
tricky to type literally when the content calls for it. But being able to do so is just a matter of
knowing the tricks, which this section will cover.

Let’s assume you are typing the following two lines:

The __kernel qualifier can be used with the __attribute__ keyword...

#`CB###2`# and #`CB###3`#

In the first sentence, you aren’t looking for any text formatting, but you’re certainly going to get it.
Double underscore is an unconstrained formatting mark. In the second sentence, you might expect
CB###2 and CB###3 to be formatted in monospace and highlighted. However, what you get is a
scrambled mess. The mix of constrained and unconstrained formatting marks in the line is
ambiguous.

There are two (reliable) solutions for escaping unconstrained formatting marks:

• Use an attribute reference to insert the unconstrained formatting mark verbatim

• Wrap the text you don’t want formatted in an inline passthrough

The attribute reference is preferred because it’s the easiest to read:

:dbl_: __
:3H: ###

The {dbl_}kernel qualifier can be used with the {dbl_}attribute{dbl_} keyword...

#`CB{3H}2`# and #`CB{3H}3`#

This works because attribute expansion is performed after text formatting (i.e., quotes substitution)
under normal substitution order. (Recall that backticks around text format the text in monospace
but permit the use of attribute references).

Here’s how you’d write these lines using the inline passthrough to escape the unconstrained
formatting marks instead:
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The +__kernel+ qualifier can be used with the +__attribute__+ keyword...

#`+CB###2+`# and #`+CB###3+`#

Notice the addition of the plus symbols. That’s the closest thing to a text formatting escape.
Everything between the plus symbols is escaped from interpolation (attribute references, text
formatting, etc). However, the text still receives proper output escaping for HTML (e.g., < becomes
&lt;).

The enclosure `+TEXT+` (text enclosed in pluses surrounded by backticks) is a special formatting
combination in Asciidoctor. It means to format TEXT as monospace, but don’t interpolate
formatting marks or attribute references in TEXT. It’s roughly equivalent to Markdown’s backticks.
Since AsciiDoc offers more advanced formatting, the double enclosure is necessary.

The more brute-force solution to the inline passthrough approach is to use the pass:c[] macro,
which is a more verbose (and flexible) version of the plus formatting marks.

The pass:c[__kernel] qualifier can be used with the pass:c[__attribute__] keyword...

#`pass:c[CB###2]`# and #`pass:c[CB###3]`#

As you can see, however, the macro is not quite as elegant or concise. In case you’re wondering, the
c in the target slot of the pass:c[] macro applies output escaping for HTML. Though not always
required, it’s best to include this flag so you don’t forget to when it is needed.

Backslashes for escaping aren’t very reliable in AsciiDoc. While they can be used, they have to be
placed so strategically that they are rather finicky.
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Chapter 10. Attributes
Attributes are one of the features that sets Asciidoctor apart from other lightweight markup
languages. Attributes can activate features (behaviors, styles, integrations, etc) or hold replacement
(i.e., variable) content.

In Asciidoctor, attributes are classified as:

• Environment attributes

• Built-in attributes

• Predefined attributes

• User-defined attributes

• API and Command Line Attributes

• Element Attributes

10.1. Attribute Restrictions
All attributes have a name and a value (though the value may be implicit).

The attribute name:

• must be at least one character long,

• must begin with a word character (A-Z, a-z, 0-9 or _) and

• must only contain word characters and hyphens.

In other words, the name cannot contain dots or spaces.

Although uppercase characters are permitted in an attribute entry (the place where an attribute is
defined), the attribute name is converted to lowercase before being stored. The attribute name in
an attribute reference is also converted to lowercase before the attribute is resolved. For example,
URI, Uri and uRI are all treated as uri. (See issue #509 for a proposed change to this restriction). A
best practice is to only use lowercase for letters in the name and avoid starting the name with a
number.

The attribute value:

• can be any inline content and

• can only contain line breaks if an explicit line continuation is used.

Certain attributes have a restricted range of allowable values. See the entries in the Catalog of
Document Attributes for details.

10.2. Attribute Assignment Precedence
The attribute assignment precedence, listed from highest to lowest, is as follows:
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• An attribute defined using the API or CLI

• An attribute defined in the document

• The default value of the attribute, if applicable

Let’s use the imagesdir attribute to show how precedence works.

The default value for the imagesdir attribute is an empty string. Therefore, if the imagesdir attribute
is not assigned a value (either in the document, API, or CLI), the processor will assign it the default
value of empty string. If the imagesdir attribute is set in the document (meaning assigned a new
value, such as images), that value will override the default value. Finally, if a value is assigned to the
imagesdir attribute via the API or CLI, that value will override both the default value and the value
assigned in the document.

It’s possible to alter this order of precedence using a modifier, covered in the next section.

10.2.1. Altering the Attribute Assignment Precedence

You can allow the document to reassign an attribute that is defined via the API or CLI by adding the
@ precedence modifier to the end of the attribute value (or, since 1.5.7, the end of the attribute
name). Adding this modifier lowers the precedence so that an assignment in the document still
wins out. We sometimes refer to this as “soft setting” the attribute. This feature can be useful for
assigning default values for attribute, but still letting the document control its own fate.

 The @ modifier is removed before the assignment is made.

Here’s an example that shows how to set the imagesdir from the CLI with a lower precedence:

$ asciidoctor -a imagesdir=images@ doc.adoc

Since 1.5.7, you can place the modifier at the end of the attribute name:

$ asciidoctor -a imagesdir@=images doc.adoc

It’s now possible to override the value of the imagesdir attribute from within the document:

= Document Title
:imagesdir: new/path/to/images

Let’s update the attribute assignment precedence list defined earlier to reflect this additional rule:

• An attribute passed to the API or CLI

• An attribute defined in the document

• An attribute passed to the API or CLI whose value (or, since 1.5.7, name) ends in @

• The default value of the attribute, if applicable
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Regardless of whether the precedence modifier is applied, an attribute assignment always
overrides the default value.

10.3. Using Attributes: Set, Assign, and Reference
Before you can use an attribute in your document, it must be set. (Sometimes referred to as
“toggling on” the attribute).

Some attributes are automatically set when Asciidoctor processes a document. You can also set (or
override) an attribute for a document by declaring an attribute entry. For example:

:sectnums:

Many attributes can be assigned a value at the same time:

:leveloffset: 3

The value may be empty, a string (of characters) or a number. A string value may include
references to other attributes.

Attributes can be unset using the bang symbol (!). The ! can be placed either before or after the
attribute’s name.

For example, both:

:sectnums!:

and

:!sectnums:

mean unset the sectnums attribute. In this case, it tells Asciidoctor to not number the sections.

To soft unset an attribute from the CLI or API, you can use the following syntax:

!name=@

The leading ! unsets the attribute while the @ lowers the precedence of the assignment. This
assignment is almost always used to unset a default value while still allowing the document to
assign a new one. One such example is sectids, which is enabled by default. !sectids=@ switches the
setting off.

An attribute reference is an inline element composed of the name of the attribute enclosed in curly
brackets. For example:
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The value of leveloffset is {leveloffset}.

The attribute reference is replaced by the attribute’s value when Asciidoctor processes the
document. Referencing an attribute that is not set is considered an error and is handled specially by
the processor.

The following sections will show you how to use attributes on your whole document, individual
blocks, and inline elements.

10.4. Setting Attributes on a Document
An attribute entry is the primary mechanism for defining a document attribute in an AsciiDoc
document. You can think of an attribute entry as a global variable assignment for AsciiDoc. The
document attribute it creates becomes available from that point forward in the document. Attribute
entries are also frequently used to toggle features.

An attribute entry consists of two parts: an attribute name and an attribute value. The attribute
name comes first. It must be at the start of the line and must be enclosed in colons (e.g., :name:). If
present, the attribute value is offset from the name part by at least one space (e.g., :name: value). Be
aware that substitutions automatically get applied to the value by default, as described in
Substitutions in an attribute entry.

Anatomy of an attribute entry

:name: value

The attribute value is optional. A blank value is often used to set (i.e., activate) a boolean attribute
(thus making a blank value implicitly true).

Anatomy of an attribute entry to set a boolean attribute

:name:

An exclamation point (!) before (or after) the attribute name unsets the attribute. In this case, the
value is ignored.

Anatomy of an attribute entry to unset an attribute

:!name:

Attribute entries have the following characteristics:

Attributes entries can:

• be assigned to a document:

◦ through the CLI or API

◦ in the document’s header
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◦ in the document’s body

• be unset (turned off) with a leading (or trailing) ! added to the name

• have default values (in the case of a built-in attribute)

• have alternate values (in the case of a built-in attribute)

• span multiple, contiguous lines

• include inline AsciiDoc content

Attribute entries can not:

• override locked attributes assigned from the command line

• include AsciiDoc block content (such as, bulleted lists or other types of whitespace-dependent
markup)

Attributes are typically defined in the document header, though they may also be defined in the
body of the document. Once set, an attribute (and its value) are available for use for the remainder
of the document. Unless locked by the API, attributes may be reassigned at any subsequent point in
the document.

10.4.1. Attribute entry use cases

Attributes entries serve three main purposes:

1. Toggle or configure built-in features

2. Set built-in asset locations

3. Content reuse

Setting built-in attributes

Numerous attribute are reserved for special purposes. These built-in attributes can be used to
toggle behavior, such as the table of contents, or control the generated output, such as selecting or
configuring a converter. Many built-in attributes only take effect when defined in the document
header.

For example, to enable the built-in table of contents, you can define (i.e., set) the toc attribute using
an attribute entry in the document header as follows:

:toc:

When the value following an attribute is left empty, as it is in the example above, the default value
will be assigned (if any). The default value for toc is auto. Therefore, the table of contents will be
placed in the default location (below the document’s title) when the document is converted.

If you want the table of contents to be placed on the right side of the document, you must assign the
attribute a new value.
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:toc: right

The right value will override the default value of auto. The value assigned to an attribute in the
document header replaces the intrinsic value (assuming the attribute is not locked).

Setting asset locations

You can also use attributes to set the base path to images (default: empty), icons (default:
./images/icons), and stylesheets (default: ./stylesheets).

Base asset path configuration example

:imagesdir: ./images
:iconsdir: ./icons
:stylesdir: ./styles

Content reuse

If you’re familiar with writing in XML, you might recognize a document attribute as a user-defined
entity. When you find yourself typing the same text repeatedly, or text that often needs to be
updated, consider assigning it to a document attribute and use that instead.

A prime use case for attribute entries is to promote frequently used URLs and links to the top of the
document.

URL attribute entry

:url-fedpkg: https://apps.fedoraproject.org/packages/rubygem-asciidoctor

Now you can refer to this attribute entry anywhere in the document (where attribute substitution is
performed) by surrounding its name in curly braces.

Instead of having to type the URL out longhand in the link macro, as follows:

A case for using an attribute reference

Did you know there's an https://apps.fedoraproject.org/packages/rubygem-
asciidoctor[Asciidoctor package for Fedora]?

We can replace the target side of the link macro with a reference to our attribute.

url-fedpkg attribute usage example

Did you know there's an {url-fedpkg}[Asciidoctor package for Fedora]?

To save even more typing, you can store the whole link in an attribute value.
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Link attribute entry

:link-fedpkg: https://apps.fedoraproject.org/packages/rubygem-asciidoctor[Asciidoctor
package for Fedora]

Now you insert this link anywhere in the document using an attribute reference.

link-fedpkg attribute usage example

Did you know there's an {link-fedpkg}?

Note that the link substitution occurs after the attribute reference is resolved. This works thanks to
the default order of substitutions on a paragraph. If you want the link macro to be resolved eagerly
at the time the attribute is assigned, you need to enclose it in a pass macro.

Link attribute entry resolved eagerly

:link-fedpkg: pass:m[https://apps.fedoraproject.org/packages/rubygem-
asciidoctor[Asciidoctor package for Fedora]]

Now you can use this link in a section title (where the order of substitutions is different). Let’s dive
deeper into which substitutions are applied to an attribute entry and how to alter them.

10.4.2. Substitutions in an attribute entry

The AsciiDoc processor automatically applies substitutions from the header substitution group to
the value of an attribute entry prior to the assignment (regardless of where the attribute entry is
declared in the document). The header substitution group replaces special characters and attribute
references. This is the same group that gets applied to metadata lines (author and revision
information) in the document header. To learn about how these substitutions work, refer to the
Substitutions chapter.

10.4.3. Altering attribute entry substitutions

If you want the value of an attribute entry to be used as is (not subject to substitutions), or you
want to alter the substitutions that are applied, you can enclose the value in the inline pass macro
(i.e., pass:[]). The inline pass macro accepts a list of zero or more substitutions in the target slot,
which can be used to control which substitutions are applied to the value. If no substitutions are
specified, no substitutions will be applied.

In order for the inline macro to work in this context, it must completely surround the attribute
value. If it’s used anywhere else in the value, it is ignored.

Here’s how to prevent substitutions from being applied to the value of an attribute entry:

:cols: pass:[.>2,.>4]
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This might be useful if you’re referencing the attribute in a place that depends on the unaltered
text, such as the value of the cols attribute on a table.

Here’s how to apply the quotes substitution to the value of an attribute entry:

:app-name: pass:quotes[MyApp^2^]

Internally, the value is stored as MyApp<sup>2</sup>. You can inspect the value stored in an attribute
using this trick:

[subs=attributes+]
----
{app-name}
----

You can also specify the substitution using the single-character alias, q.

:app-name: pass:q[MyApp^2^]

The inline pass macro kind of works like an attribute value preprocessor. If the processor detects
that an inline pass macro completely surrounds the attribute value, it:

1. reads the list of substitutions from the target slot of the macro

2. unwraps the value from the macro

3. applies the substitutions to the value

If the macro is absent, the value is processed with the header substitution group.

You can also change the substitutions that are applied to an attribute at the time it is resolved. This
is done by manipulating the substitutions applied to the text where it is referenced. For example,
here’s how we could get the processor to apply quote substitutions to the value of an attribute:

:app-name: MyApp^2^

[subs="specialchars,attributes,quotes,replacements,macros,post_replacements"]
The application is called {app-name}.

Notice that we’ve swapped the order of the attributes and quotes substitutions. This strategy is akin
to postprocessing the attribute value.

10.4.4. Splitting attribute values over multiple lines

When an attribute value is very long, it’s possible to split it (i.e., soft-wrap) across multiple lines.

Let’s assume we are working with the following attribute entry:
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A long, single-line attribute

:long-value: If you have a very long line of text that you need to substitute
regularly in a document, you may find it easier to split it neatly in the header so it
remains readable to the next person reading your docs code.

You can split the value over multiple lines to make it more readable by inserting a space followed
by a backslash (i.e.,  \) at the end of each continuing line.

A long, multiline attribute (soft wrapped)

:long-value: If you have a very long line of text \
that you need to substitute regularly in a document, \
you may find it easier to split it neatly in the header \
so it remains readable to folks reading your docs code.

The backslash and the newline that follows will be removed from the attribute value when the
attribute entry is parsed, making this second example effectively the same as the first. The space
before the backslash is preserved, so you have to use this technique at a natural break point in the
content.

You can force an attribute value to hard wrap by adding a plus surrounded by spaces before the
backslash.

An attribute value with hard line breaks

:haiku: Write your docs in text, + \
AsciiDoc makes it easy, + \
Now get back to work!

This syntax ensures that the newlines are preserved in the output document as hard line breaks.

10.4.5. Attribute limitations

Attributes let you do a surprising amount of formatting for what is fundamentally a text
replacement tool.

It may be tempting to try and extend attributes to be used for complex replaceable markup.

Supported

Basic in-line AsciiDoc markup is permitted in attribute values, such as:

• attribute references

• text formatting (usually wrapped in a pass macro)

• inline macros (usually wrapped in a pass macro)

Unsupported

Complex AsciiDoc markup is not permitted in attribute values, such as:
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• lists

• multiple paragraphs

• other whitespace-dependent markup types

10.5. Setting Attributes on an Element
An attribute list can apply to blocks, inline quotes text, and macros. The attributes and their values
contained in the list will take precedence over attribute entries.

Anatomy of an attribute list

[positional_attribute1,positional_attribute2,name_attribute1="value"]

Attribute lists:

1. apply to blocks as well as macros and inline quoted text

2. can contain positional and named attributes

3. take precedence over global attributes

10.5.1. Positional Attribute

Positional attributes are un-named values at the start of the attribute list. The attribute that they
are assigned to depends on the type of the element:

• icon: (1) size

• image: and image:: (1) alt text, (2) width, (3) height

• Delimited blocks: (1) block name (aka style)

• Other inline quoted text: (1) role

For example, the following two image macros are equivalent.

image::sunset.jpg[Sunset,300,400]

image::sunset.jpg[alt=Sunset,width=300,height=400]

The second macro is just a duplicate of the first macro written out longhand.

10.5.2. Named Attribute

A named attribute consists of a name and a value separated by an = character (e.g., name=value).

If the value contains a space, comma, or quote character, it must be enclosed in double or single
quotes (e.g., name="value with space"). In all other cases, the surrounding quotes are optional. If
present, the enclosing quotes are dropped from the parsed value.
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To undefine a named attribute, set the value to None (case sensitive).

10.5.3. Attribute List Substitutions

Attribute references are expanded before the block attribute list is processed. Therefore, it’s not
necessary to force substitutions to be applied if you simply want to use a document attribute
reference in a block attribute.

If the attribute name (for a positional attribute) or value (for a named attribute) is enclosed in
single quotes (e.g., title='Processed by https://asciidoctor.org[Asciidoctor]'), normal
substitutions are applied to the value at assignment time (with some exceptions). No special
processing is performed if the value is not enclosed in quotes or is enclosed in double quotes.

If the attribute value contains the same quote character being used to enclose the value, escape the
quote character in the value by prefixing it with a backslash (e.g., title="\"Dark Horse\" is a song
by George Harrison").

10.5.4. Style

The style attribute is the first positional attribute in an attribute list. It specifies a predefined set of
characteristics that should apply to a block element or macro.

For example, a paragraph block can be assigned one of the following built-in style attributes:

• normal (default, so does not need to be set)

• literal

• verse

• quote

• listing

• TIP

• NOTE

• IMPORTANT

• WARNING

• CAUTION

• abstract

• partintro

• comment

• example

• sidebar

• source

38



10.5.5. Id

The id attribute specifies a unique name for an element. That name can only be used once in a
document.

An id has two purposes:

1. to provide an internal link or cross reference anchor for the element

2. to reference a style or script used by the output processor

Block Assignment

In an attribute list, there are two ways to assign an id attribute to a block element.

1. Prefixing the name with a hash (#).

2. Specifying the name with id=<name>.

[#goals]
* Goal 1
* Goal 2

Let’s say you want to create a blockquote from an open block and assign it an ID and role. You add
quote (the block style) in front of the # (the ID) in the first attribute position, as this example shows:

[quote#roads, Dr. Emmett Brown]
____
Roads? Where we're going, we don't need roads.
____

 The order of ID and role values in the shorthand syntax does not matter.



If the ID contains a ., you must define it using either a longhand assignment (e.g.,
id=classname.propertyname) or the anchor shorthand (e.g.,
[[classname.propertyname]]). This is necessary since the . character in the
shorthand syntax is the delimiter for a role, and thus gets misinterpreted as such.

Inline Assignment

The id (#) shorthand can be used on inline quoted text.

Quoted text block with id assignment using Asciidoctor shorthand

[#free_the_world]*free the world*
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10.5.6. Role

An element can be assigned numerous roles.

Block Assignment

In an attribute list, there are two ways to assign a role attribute to a block element.

1. Prefixing the name with a dot (.).

2. Specifying the name with role=<name>.

[.summary]
* Review 1
* Review 2

[role="summary"]
* Review 1
* Review 2

To specify multiple roles using the shorthand syntax, separate them by dots.

[.summary.incremental]
* Review 1
* Review 2

[role="summary,incremental"]
* Review 1
* Review 2

Inline Assignment

The role (.) shorthand can be used on inline quoted text.

Quoted text with role assignments using traditional AsciiDoc syntax

[big goal]*free the world*

Quoted text with role assignments using Asciidoctor shorthand

[.big.goal]*free the world*


The attribute list preceding formatted text can be escaped using a backslash (e.g.,
\[role]*bold*). In this case, the text will still be formatted, but the attribute list will
be unescaped and output verbatim.
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Role-playing for text enclosed in backticks

To align with other formatted (i.e., quoted) text in AsciiDoc, roles can now be assigned to text
enclosed in backticks.

Given:

[.rolename]`monospace text`

the following HTML is produced:

<code class="rolename">monospace text</code>

Using the shorthand notation, an id (i.e., anchor) can also be specified:

[#idname.rolename]`monospace text`

which produces:

<a id="idname"></a><code class="rolename">monospace text</code>

10.5.7. Options

The options attribute is a versatile named attribute that can contain a comma separated list of
values.

It can also be defined globally with an attribute entry.

Block Assignment

In an attribute list, there are three ways to assign an options attribute to a block element.

1. Prefixing the value with a percent sign (%).

2. Specifying the value with opts=<name>

3. Specifying the value with options=<name>.

Consider a table block with the three option values header, footer, and autowidth.

Here’s how the options are assigned to the table using the shorthand notation (%).
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Shorthand Asciidoctor syntax

[%header%footer%autowidth]
|===
| Cell A | Cell B
|===

Here’s how the options are assigned to the table using options.

Traditional AsciiDoc syntax

[options="header,footer,autowidth"]
|===
| Cell A | Cell B
|===

Let’s consider the options when combined with other attributes.

Shorthand Asciidoctor block syntax

[horizontal.properties%step]
property 1:: does stuff
property 2:: does different stuff

Traditional AsciiDoc block syntax

[horizontal, role="properties", options="step"]
property 1:: does stuff
property 2:: does different stuff

10.6. Assigning Document Attributes Inline
Document attributes can be assigned using the following syntax:

{set:<attrname>[!][:<value>]}

For example:

{set:sourcedir:src/main/java}

is effectively the same as:

:sourcedir: src/main/java
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This is important for being able to assign document attributes in places where attribute entry lines
are not normally processed, such as in a table cell.

10.6.1. Handle Missing or Undefined Attributes

As a result of a misconfigured document or inadvertent substitution, an attribute reference may
point to a non-existent attribute (e.g., {does-not-exist}). It could be that the attribute reference
itself undefines the attribute (e.g., {set:attribute-no-more!}). You’ll want to think about how you
want the processor to handle these situations and configure it accordingly.

AsciiDoc Python simply drops any line that contains a reference to a missing attribute. This
“feature” was designed with AsciiDoc Python’s own template language in mind, which is also based
on the AsciiDoc syntax. However, this behavior was never really intended for use in regular
AsciiDoc documents. The behavior is frustrating for the author, editor, or reader because it’s not
immediately obvious when a line goes missing. Discovering the absence of certain line often
requires a painstaking read-through of the document or section, if it’s even noticed at all.

Asciidoctor offers two attributes to alleviate this inconvenience: attribute-missing and attribute-
undefined.

Missing attribute

The attribute-missing attribute controls how missing (i.e., unresolved) references are handled. By
default, missing references are left intact so the integrity of the document is preserved (skip).
However, that mode doesn’t help the author track down these references.

To help with that task, Asciidoctor can be configured to warn when a missing reference is
encountered (warn). Asciidoctor can also emulate the behavior of AsciiDoc Python (drop-line), or
offer something in between (drop).

Here are the four possible values of the attribute-missing attribute:

skip

leaves the reference intact without issuing a warning (default setting)

drop

drops the reference, but not the whole line

drop-line

drops the whole line on which the reference occurs (matches behavior of AsciiDoc Python)

warn

leaves the reference intact, but also prints a warning about the missing attribute
(recommended)

Consider the following line of AsciiDoc:

Hello, {name}!
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Here’s how the line is handled in each case, assuming the name attribute is not defined:

skip Hello, {name}!

drop Hello, !

drop-line

warn
asciidoctor: WARNING: skipping reference to missing attribute: name

If you want the processor to fail when the document contains a missing attribute, set the attribute-
missing attribute to warn and pass the --failure-level=WARN option to the processor.

$ asciidoctor -a attribute-missing=warn --failure-level=WARN doc.adoc

When using the API, you can consult the logger for the max severity of all messages reported or
look for specific messages in the stack.

There are several exceptions when the attribute-missing attribute is not strictly honored. One of
those cases is the include directive. If a missing attribute is found in the target of an include
directive, the processor will issue a warning about the missing attribute and drop the include
directive. This behavior was chosen because showing the unresolved include directive to the reader
is messy.

Another case is the block image macro. If a missing attribute is found in the target of an include
directive, the processor will issue a warning about the missing attribute, but leave the image macro
unresolved so as to show it as alt text.

A missing attribute reference can safely be used in an ifeval clause without any side effects (i.e.,
drop) since often the purpose of that statement is to determine whether an attribute resolves to a
value.

Undefined attribute

The attribute attribute-undefined controls how expressions that undefine an attribute are handled.
By default, the line is dropped since the expression is a statement, not content.

This attribute has two possible values:

drop

substitute the expression with an empty string after processing it

drop-line

drop the line that contains this expression (default setting; matches behavior of AsciiDoc Python)

The option skip doesn’t make sense here since the statement is not intended to produce content.

Consider the following declaration:
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{set:name!}

Depending on whether attribute-undefined is drop or drop-line, either the statement or the line that
contains it will be discarded. It’s reasonable to stick with the compliant behavior, drop-line, in this
case.


We recommend putting any statement that undefines an attribute on a line by
itself.
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Building a Document
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Chapter 11. Text Editor
Since AsciiDoc syntax is just plain text, you can write an AsciiDoc document using any text editor.
You don’t need complex word processing programs like Microsoft Word, OpenOffice Writer or
Google Docs. In fact, you shouldn’t use these programs because they add cruft to your document
that you can’t see that makes conversion tedious.

While it’s true any text editor will do, an editor that supports syntax highlighting for AsciiDoc may
be more helpful. The color brings contrast to the text, making it easier to read. The highlighting
also confirms when you’ve entered the correct syntax for an inline or block element.

The most popular application for editing plain text on macOS is TextMate. A similar choice on
Linux is GEdit. On Windows, stay away from Notepad and Wordpad because they produce plain
text which is not cross-platform friendly. Opt instead for a competent text editor like Notepad++. If
you’re a programmer (or a writer with an inner geek), you’ll likely prefer Vim, Emacs, or Sublime
Text, all of which are available cross-platform. For those that work on multiple platforms, Atom is
a consistent choice with many add-on packages for working with AsciiDoc files. The key feature all
these editors share is syntax highlighting for AsciiDoc.


Previewing the output of the document while editing can be helpful. To learn how
to setup instant preview, check out the Editing AsciiDoc with Live Preview tutorial.
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Chapter 12. Document Types
Article (keyword: article)

The default doctype. In DocBook, includes the appendix, abstract, bibliography, glossary, and
index sections.

Book (keyword: book)

Builds on the article doctype with the additional ability to use a top-level title as part titles,
includes the appendix, dedication, preface, bibliography, glossary, index, and colophon. There’s
also the concept of a multi-part book, but the distinction from a regular book is determined by
the content. A book only has chapters and special sections, whereas a multi-part book is divided
by parts that each contain one or more chapters or special sections.

Man page (keyword: manpage)

Used for producing a roff or HTML-formatted man page (short for manual page) for Unix and
Unix-like operating systems. This doctype instructs the parser to recognize a special document
header and section naming conventions for organizing the AsciiDoc content as a manual page.
Refer to Man Pages for details on how to compose AsciiDoc for this purpose.

Inline (keyword: inline)

Asciidoctor only. There may be cases when you only want to apply inline AsciiDoc formatting to
input text without wrapping it in a block element. For example, in the Asciidoclet project
(AsciiDoc in Javadoc), only the inline formatting is needed for the text in Javadoc tags.

12.1. Inline doctype
The rules for the inline doctype are as follows:

• Only a single paragraph is read from the AsciiDoc source.

• Inline formatting is applied.

• The output is not wrapped in the normal paragraph tags.

Given the following input:

http://asciidoc.org[AsciiDoc] is a _lightweight_ markup language...

Processing it with the options doctype=inline and backend=html5 produces:

<a href="http://asciidoc.org">AsciiDoc</a> is a <em>lightweight</em> markup
language&#8230;

The inline doctype allows the Asciidoctor processor to cover the full range of applications, from
unstructured (inline) text to full, standalone documents!
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Chapter 13. Basic Document Anatomy
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Chapter 14. Header
The document header is a special set of contiguous lines at the start of the document that
encapsulates the document title, author and revision information, and document-wide attributes
(either built-in or user-defined).

The header typically begins with a document title, though this element is optional. If a document
title is specified, it may be immediately followed by two optional lines of text to set the author and
revision information. Finally, the header may declare document-wide attributes (built-in or user-
defined) using attribute entries. Attribute entries can be placed anywhere in the header, including
above the document title, though the preferred placement is below the document title, if present.
Since the document title is optional, it’s possible for the header to only consist of attribute entries.

The first block content (e.g., a paragraph) or a blank line in the document marks the end of the
header. Any attributes defined below the document header will not be scoped to the document.

The document header must not contain any blank lines or block content!

Line comments may be used in the header, but only if those lines are directly adjacent to other lines
in the header.

The header is optional when the doctype is article or book. However, a header is required when the
document type is manpage. The requirements for a manual page (man page) are described in the
man pages section.

The header (document title, author, and revision information) is included by default when
converting to a standalone document. If you do not want the header of a document to be displayed,
set the noheader attribute in the document’s header (or set the attribute using the API or CLI).

Front matter

Many static site generators, such as Jekyll and Middleman, rely on front matter added to the
top of the document to determine how to convert the content. Asciidoctor has a number of
attributes available to correctly handle front matter. See the static website generators section
to learn how Asciidoctor integrates with static website generators.

Now let’s explore the document title in detail.

14.1. Document Title
The document title resembles a level-0 section title, which is written using a single equal sign
followed by at least one space (i.e., = ), then the text of the title. The document title must be the first
level-0 section title in the document. The only content permitted above the document title are blank
lines, comment lines and document-wide attribute entries.

Here’s an example of a document title followed by a short paragraph. Notice the blank line between
the document title and the first line of prose. That blank line is what offsets the document header
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from the body.

Document with a title

= The Dangerous and Thrilling Documentation Chronicles

This journey begins on a bleary Monday morning.

Result: Rendered document title

When the doctype is article or manpage, the document can only have one level-0 section title. In
contrast, the book document type permits multiple level-0 section titles. When the doctype is book,
the first level-0 section title, located in the header, is the document’s title and subsequent level-0
section titles are the part titles.

14.1.1. doctitle attribute

A document’s title is assigned to the built-in doctitle attribute. The doctitle attribute can be
referenced anywhere in a document and resolves to the document’s title when displayed.

Referencing the doctitle attribute

= The Dangerous and Thrilling Documentation Chronicles

{doctitle} begins on a bleary Monday morning.

Result: doctitle output

The doctitle attribute can also be used to set the document title instead of using a level-0 section
title. However, the attribute must still be set in the document header.
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14.1.2. Document subtitle

Asciidoctor recognizes a subtitle in the primary level-0 heading. If the primary title contains at least
one colon followed by a space (i.e, : ), Asciidoctor treats the text after the final colon-space
sequence as the subtitle.


The subtitle is not distinguished from the main title in the html5 output. It’s only
distinguished from the main title when using the docbook, epub3, and pdf
converters.

Document with a subtitle

= The Dangerous and Thrilling Documentation Chronicles: A Tale of Caffeine and Words

It began on a bleary Monday morning.

In this example, the following is true:

Main title The Dangerous and Thrilling Documentation Chronicles

Subtitle A Tale of Caffeine and Words

Document with a subtitle and multiple colons

= A Cautionary Tale: The Dangerous and Thrilling Documentation Chronicles: A Tale of
Caffeine and Words

It began on a bleary Monday morning.

In this example, the following is true:

Main title A Cautionary Tale: The Dangerous and Thrilling Documentation Chronicles

Subtitle A Tale of Caffeine and Words

Instead of using a colon followed by a space as the separator characters between the main title and
the subtitle, you can specify a custom separator using the title-separator attribute.

Document with a subtitle using a custom separator

:title-separator: {sp}|
= The Dangerous and Thrilling Documentation Chronicles | A Tale of Caffeine and Words

It began on a bleary Monday morning.

Note that a space is always appended to the value of the title-separator (making the default value
of the title-separator effectively a single colon).
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Asciidoctor also provides an API for extracting the title and subtitle. See the API docs for the
Document::Title for more information. Support for subtitle functionality for other sections is being
considered. Refer to issue #1493.

14.1.3. Document title visibility

You can control whether or not the document title appears in the converted document using the
showtitle attribute.

When converting a standalone document, the document title is shown by default. If you don’t want
the title to be shown in this case, unset the showtitle attribute using showtitle! in the document
header or via the CLI or API.

When converted to an embeddable document, the document title is not shown by default. If you
want the title to be shown, set the showtitle attribute in the document header or via the CLI or API.
The author and revision information is not shown below the document title in the embeddable
version of the document like it is in the standalone document, even when the showtitle attribute is
set.

Let’s look at how to add additional metadata to the document header, including an author and her
email address.

14.2. Author and Email
The author of a document is listed on the line beneath the document’s title. An optional email
address or URL can follow an author’s name inside angle brackets.

Let’s add an author with her email address to the document below.

= The Dangerous and Thrilling Documentation Chronicles
Kismet Rainbow Chameleon <kismet@asciidoctor.org>

This journey begins...

== About the Author

You can contact {author} at {email}.
{firstname} loves to hear from other chroniclers.

P.S. And yes, my middle name really is {middlename}.
What else would you expect from a member of the Rocky Mountain {lastname} Clan?

{authorinitials}
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Result: Rendered author and email information displayed on the byline and referenced in the document’s
body

As you can see in the example above, Asciidoctor uses the author’s name and email to assign values
to a number of built-in attributes that can be used throughout the document’s body. These
attributes include:

author

The author’s full name, which includes all of the characters or words prior to a semicolon (;),
angle bracket (<) or the end of the line.

firstname

The first word in the author attribute.

lastname

The last word in the author attribute.

middlename

If a firstname and lastname are present, any remaining words or characters found between
these attributes are assigned to the middlename attribute.

authorinitials

The first character of the firstname, middlename, and lastname attributes.

email

An email address, delimited by angle brackets (<>).

If one or more of the author’s names consists of more than one word, use an underscore (_)
between the words you want to adjoin. For example, the author of the following document has a
compound last name.
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= The Unbearable Lightness of Nomenclature
Jan Hendrik van_den_Berg

My first name is {firstname}.

My middle name is {middlename}.

My last name is {lastname}.

My initials are {authorinitials}.

Result: Rendered author information when author has a compound name

Alternatively, the author and email attributes can be set explicitly in the header.

= The Dangerous and Thrilling Documentation Chronicles
:author: Kismet Rainbow Chameleon
:email: kismet@asciidoctor.org

This journey begins...

== About the Author

You can contact {author} at {email}.
{firstname} loves to hear from other chroniclers.

P.S. And yes, my middle name really is {middlename}.
What else would you expect from a member of the Rocky Mountain {lastname} Clan?

{authorinitials}
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Result: Rendered author information when author and email attributes are explicitly set

The html5 and docbook converters can convert documents with multiple authors. Multiple authors
and their emails are separated by semicolons (;) when they’re listed on the same line.

= The Dangerous and Thrilling Documentation Chronicles
Kismet Rainbow Chameleon <kismet@asciidoctor.org>; Lazarus het_Draeke
<lazarus@asciidoctor.org>

This journey begins...

== About the Authors

You can contact {author} at {email}.
{firstname} loves to hear from other chroniclers.

{author_2} specializes in burning down automation obstacles. ①
Email {lastname_2} at {email_2}.

Until our next adventure!

{authorinitials} & {authorinitials_2}

① To reference the additional authors in the document body, the author attributes are appended
with an underscore (_) followed by the position of the author in the author information list (i.e.
Lazarus het Draeke is the second author in the list so his author attributes are appended with a
2).
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Result: Rendered author information when document has multiple authors

14.2.1. Attribute references in the author line

The implicit author line was not intended to support arbitrary placement of attribute references.
While attribute references are replaced in the author line (as part of the header substitution group),
they aren’t substituted until after the line is parsed. This ordering can sometimes produce
undesirable or surprising results. It’s best to use the author line strictly as a shorthand for defining
a fixed author and email.

If you do need to use attribute references in the author or email value, you should revert to
defining the attributes explicitly using attribute entries.

Using attribute references to set author and email

= Document Title
:author_name: ACME Industries
:author_email: info@acme.com
:author: {author_name}
:email: {author_email}

Just remember that the author line is for static text. Once you graduate beyond static text, you
should switch to using attribute entries to define the built-in author attributes, which will give you
much more power.
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14.3. Revision Number, Date and Remark
The revision information is read from the third (non-attribute) line of the header, beneath the
author information line. A document’s revision information has slots for three implicit attributes.

revnumber The document’s version number. In order to be recognized, the version number
must contain at least one numeric character. Any letters or symbols preceding the
numeric character are ignored. If the implicit revnumber is on a line by itself, it
must begin with the “v” character (e.g., v1.0) or be followed by a comma (e.g.,
1.0,) If the implicit revdate is present, it must be separated from the revnumber by
a comma (e.g., 2020-10-10, v78.1).

revdate The date the document version was completed. When the revnumber or revremark
attributes are set, but revdate is not, then revdate will be assigned the docdate
value.

revremark Information about this version of the document.

Here’s an example of a revision line.

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon <kismet@asciidoctor.org>
v1.0, October 2, 2013: First incarnation // <1> ② ③

This journey begins...

== Colophon

Version: {revnumber}

Version Date: {revdate}

Version Notes: {revremark}

① revnumber and revdate must be separated by a comma (,).

② revdate can contain words, letters, numbers, and symbols.

③ The revremark attribute must be preceded by a colon (:), regardless of whether revnumber or
revdate are set.
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Result: Rendered revision information displayed on the byline and referenced in the document’s body

The revnumber in the byline is prefixed by the word Version; however, when referenced in the
body of the document, only the numerical value is displayed. The version-label attribute controls
the version number label in the byline. The revision information attributes can also be explicitly set
in the header.

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon <kismet@asciidoctor.org>
:revnumber: 1.0 ①
:revdate: 10-02-2013
:revremark: The first incarnation of {doctitle} ②
:version-label!: ③

This journey begins...

== Colophon

Version: {revnumber}

Version Date: {revdate}

Version Notes: {revremark}

① When explicitly set, any characters preceding the version number are not dropped.

② The revremark can contain attribute references.

③ The version-label attribute is unset so that the word Version does not precede the revnumber in
the byline.
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Result: Rendered revision information when revision attributes are explicitly set

In the converted document, notice that the V preceding the revnumber is capitalized in the byline
but not when the attribute is referenced in the body of the document.

 Revision extraction information and an extraction example are pending.

14.4. Subtitle Partitioning
By default, the document title is separated into a main title and subtitle using the industry standard,
a colon followed by a space.


As of Asciidoctor 1.5.2, subtitle partitioning is not implemented in the HTML 5
backend.

A document title that contains a subtitle

= Main Title: Subtitle

The separator is searched from the end of the text. Therefore, only the last occurrence of the
separator is used for partitioning the title.

A document title that contains a subtitle and more than one separator

= Main Title: Main Title Continued: Subtitle

You can modify the title separator by specifying the separator block attribute explicitly above the
document title (since Asciidoctor 1.5.3). Note that a space will automatically be appended to the
separator value.
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A document title with an explicit title separator

[separator=::]
= Main Title:: Subtitle

You can also set the separator using a document attribute, either in the document:

A document title with an explicit title separator

= Main Title:: Subtitle
:title-separator: ::

or from the API or CLI (shown here):

$ asciidoctor -a title-separator=:: document.adoc

You can partition the title from the API when calling the doctitle method on Document:

Retrieving a partitioned document title

title_parts = document.doctitle partition: true
puts title_parts.title
puts title_parts.subtitle

You can partition the title in an arbitrary way by passing the separator as a value to the partition
option. In this case, the partition option both activates subtitle partitioning and passes in a custom
separator.

Retrieving a partitioned document title with a custom separator

title_parts = document.doctitle partition: '::'
puts title_parts.title
puts title_parts.subtitle

14.5. Metadata
Document metadata, such as a description of the document, keywords, and the title, can be
assigned to attributes in the header. When converted to HTML, the values of these attributes will
correspond to tags contained in the <head> section of an HTML document.

14.5.1. Description

You can include a description of the document using the description attribute.
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= The Dangerous and Thrilling Documentation Chronicles
Kismet Rainbow Chameleon <kismet@asciidoctor.org>; Lazarus het_Draeke
<lazarus@asciidoctor.org>
:description: A story chronicling the inexplicable hazards and vicious beasts a \ ①
documentation team must surmount and vanquish on their journey to finding an \
open source project's true power.

This journey begins on a bleary Monday morning.

① If the document’s description is long, you can break the attribute’s value across several lines by
ending each line with a backslash \ that is preceded by a space.

When converted to HTML, the document description value is assigned to the HTML <meta> tag.

HTML output

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="Asciidoctor 1.5.6.2">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="description" content="A story chronicling the inexplicable hazards and
vicious beasts a documentation team must surmount and vanquish on their journey to
finding an open source project's true power.">
<title>The Dangerous and Thrilling Documentation Chronicles</title>
<style>

14.5.2. Keywords

The keywords attribute contains a list of comma separated values that are assigned to the HTML
<meta> tag.

= The Dangerous and Thrilling Documentation Chronicles
Kismet Rainbow Chameleon <kismet@asciidoctor.org>; Lazarus het_Draeke
<lazarus@asciidoctor.org>
:keywords: documentation, team, obstacles, journey, victory

This journey begins on a bleary Monday morning.
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HTML output

<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="generator" content="Asciidoctor 1.5.6.1">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<meta name="keywords" content="documentation, team, obstacles, journey, victory">
<title>The Dangerous and Thrilling Documentation Chronicles</title>
<style>

14.5.3. Alternate Title

By default, Asciidoctor uses the text of the document title as the value of the HTML <title> tag. You
can override this behavior by setting the title attribute in the document header.

14.5.4. Custom Metadata, Styles and Functions

You can add content, such as custom metadata, stylesheet, and script information, to the header of
the output document using docinfo (“document information”) files. The docinfo file section details
what these files can contain and how to use them.

14.6. Header Summary
Header attributes and values

Attribute Values Description Notes Converters

author Author’s full name all

authorinitia
ls

First character of each
word in the author
attribute

all

description Text describing the
document

html

docinfo,
docinfo1,
docinfo2

Adds content from a
docinfo file to header

html,
docbook

doctitle Text entered
by user

Title of document Identical to the value
returned by
Document#doctitle

all

email Email address all

firstname First word of author
attribute

all
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Attribute Values Description Notes Converters

keywords A list of comma-separated
values that describe the
document

html

lastname Last word of author
attribute

all

middlename Middle word of author
attribute

all

no-header-
footer, -s

Generate an embeddable
document; exclude the
document frame

all

noheader Suppresses the output of
the header

all

nofooter Suppresses the output of
the footer

all

notitle Toggles the display of a
document’s title

all

revdate Date of document version all

revnumber Version number of the
document

all

revremark Version comments all

showtitle Toggles the display of an
embedded document’s title

all

title Alternative title of the
document

html

version-
label

Version, User
defined

The label preceding the
revnumber in a converted
document’s byline

html
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Chapter 15. Preamble
Content between the document header and the first section title is called the preamble. The
preamble is optional.

Preamble

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon

This journey begins on a bleary Monday morning.
Our intrepid team is in desperate need of double shot mochas, but the milk expired
eight days ago.
A trip to the dairy was out of the question.
On Friday night, a mutant, script-injecting warlock had infected the Shetland cattle
herd with a ravenous craving for tags and annotations.
The security wolves were at a trust building retreat in Katchanga, and no one in the
village could locate their defensive operations manual.

Weak daylight trickled across the stripped pasture, chased by distant bovine
screams...

== Cavern Glow

The river rages through the cavern, rattling its content...

When using the default Asciidoctor stylesheet, the lead attribute is applied to the first paragraph of
the preamble.
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Result: Rendered preamble
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Chapter 16. Sections
Sections partition the document into a content hierarchy. In AsciiDoc, sections are defined using
section titles.

A section title represents the heading for a section. Section title levels are specified by two to six
equal signs. The number of equal signs in front of the title represents the nesting level (using a 0-
based index) of the section.

Section titles available in an article doctype

= Document Title (Level 0)

== Level 1 Section Title

=== Level 2 Section Title

==== Level 3 Section Title

===== Level 4 Section Title

====== Level 5 Section Title

== Another Level 1 Section Title

Render section titles

Document Title (Level 0)

Level 1 Section Title

Level 2 Section Title

Level 3 Section Title

Level 4 Section Title

Level 5 Section Title

Another Level 1 Section Title
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In addition to the equals sign marker used for defining single-line section titles,
Asciidoctor recognizes the hash symbol (#) from Markdown. That means the
outline of a Markdown document will be converted just fine as an AsciiDoc
document.

Section levels must be nested logically. There are two rules you must follow:

1. A document can only have multiple level 0 sections if the doctype is set to book.

◦ The first level 0 section is the document title; subsequent level 0 sections represent parts.

2. Section levels cannot be skipped when nesting sections (e.g., you can’t nest a level 5 section
directly inside a level 3 section; an intermediary level 4 section is required).

For example, the following syntax is illegal:

= Document Title

= Illegal Level 0 Section (violates rule #1)

== First Section

==== Illegal Nested Section (violates rule #2)

Content above the first section title is designated as the document’s preamble. Once the first section
title is reached, content is associated with the section it is nested in.

== First Section

Content of first section

=== Nested Section

Content of nested section

== Second Section

Content of second section

16.1. Titles as HTML Headings
When the document is converted to HTML 5 (using the built-in html5 backend), each section title
becomes a heading element where the heading level matches the number of equal signs. For
example, a level 1 section (==) maps to an <h2> element.
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16.2. Auto-generated IDs
If you don’t specify a custom ID for a section, the processor automatically generates an ID from the
section’s title and assigns it to the section by default.

The ID is derived from the section title as follows:

• Inline formatting is applied (in title substitution order).

• All characters are converted to lowercase.

• The value of the idprefix attribute (_ by default) is prepended.

• Character references, HTML/XML tags, and invalid ID characters are removed.

◦ Refer to the NT-Name section of the XML specification for a list of valid ID characters.

◦ Prior to 1.5.7, HTML/XML tags were not removed and character references and invalid ID
characters were replaced with the value of the idseparator attribute (_ by default).

• Spaces, hyphens, and periods are replaced with the value of the idseparator attribute (_ by
default)

• Repeating separator characters are condensed.

• If necessary, a sequence number is appended until the ID is unique within the document.

For example, the section title Wiley & Sons, Inc. produces the ID _wiley_sons_inc. You can
customize the replacement characters or toggle ID auto-generation using document attributes.

You can change the ID prefix by setting the idprefix attribute. The value of the idprefix attribute
must begin with a valid ID start character and can have any number of additional valid ID
characters.

:idprefix: id_

If you want to remove the prefix, set the attribute to an empty value.

:idprefix:



If you set the idprefix to blank, you could end up generating IDs that are invalid in
DocBook output (e.g., an ID that begins with a number) or that match a built-in ID
in the HTML output (e.g., header). In this case, we recommend either using a non-
empty value of idprefix or assigning explicit IDs to your sections.

You can change the word separator using the idseparator attribute. Unless empty, the value of the
idseparator must be exactly one valid ID character.

:idseparator: -
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If you don’t want to use a separator, set the attribute to an empty value.

:idseparator:


When a document is rendered on GitHub, the idprefix is set to an empty value and
the idseparator is set to -. These settings are used to ensure that the IDs generated
by GitHub match the IDs generated by Asciidoctor.

To disable the auto-generation of section IDs, unset the sectids attribute.

:sectids!:

Custom IDs, covered next, are used even if auto-generation of section IDs is disabled.


If you disable auto-generated section IDs, and you don’t assign a custom ID to a
section, you won’t be able to link to (i.e., reference) that section.

16.3. Custom IDs
You can assign a custom ID and optional reference text (i.e., label) to a section (see Defining an
Anchor). The custom ID is used in place of the auto-generated ID. This can be useful when you want
to define a stable anchor for linking to a section using a cross reference. The reference text is used
when referencing the ID without specifying explicit text. This is a good way to centrally manage the
automatic reference text that is used to refer to a section.

Here’s an example of a section with a custom ID:

[#tiger-subspecies]
=== Subspecies of Tiger

Here’s an example of a section with a custom ID and reference text:

[[tiger-subspecies,Tigers]]
=== Subspecies of Tiger

The ID can be written using the following shorthand (though there’s no shorthand yet for the
reference text):

[#tiger-subspecies,reftext=Tigers]
=== Subspecies of Tiger

The value of the reftext attribute must be quoted if it contains spaces or commas.
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Asciidoctor recognizes all valid UTF-8 characters in section IDs. When using the
double square bracket form, the ID must conform to the XML Name rules, which
means the ID must start with a letter, an underscore, or a colon. If you’re
generating a PDF from AsciiDoc using a2x and dblatex, see Using UTF-8 titles with
a2x to learn about the required latex.encoding=utf8 switch to activate this
portability.

16.4. Multiple Anchors
While a section title can only have a single primary ID, as of Asciidoctor 1.5.7, it’s possible to
register additional anchor points on a section title using inline anchors. This feature works
regardless of whether you assign a custom ID.

Here’s how to register additional anchor points when using an auto-generated ID:

Register additional leading anchor points

== [[secondary-id]][[tertiary-id]]Section Title

Register additional trailing anchor points

== Section Title[[secondary-id]][[tertiary-id]]

You can place the anchors anywhere you want within the section title line. Where you place them is
where the anchor will end up in the output, so it’s best to put them either at the beginning or the
end. The beginning is the preferred location.

These additional anchor points don’t interfere with defining a custom ID.

Register additional leading anchor points on a section title with a custom ID

[#primary-id]
== [[secondary-id]][[tertiary-id]]Section Title

Alternately, you can move the primary ID inline by placing it after the section title, offset by a single
space.

Set the custom ID within the section title

== Section Title[[secondary-id]][[tertiary-id]] [[primary-id]]

However, we don’t recommend defining the primary ID inline as it’s more difficult to read.

16.5. Links
To turn section titles into links, enable the sectlinks attribute. The default Asciidoctor stylesheet
displays linked section titles with the same color and styles as unlinked section titles.
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16.6. Anchors
When the <code>sectanchors</code> attribute is enabled on a document, an anchor (empty link) is
added before the section title. The default Asciidoctor stylesheet renders the anchor as a section
entity (<code>&sect;</code>) that floats to the left of the section title.

16.7. Numbering
Asciidoctor allows section numbering to be toggled on and off throughout a document. You can
enable section numbers using the sectnums attribute.

:sectnums:


Asciidoctor still supports the attribute name numbered to number sections for
backward compatibility with AsciiDoc Python, but the name sectnums is preferred.

You can also use this attribute entry above any section title in the document to toggle the auto-
numbering setting. When you want to turn off the numbering, add an exclamation point to the end
of the attribute name:

:sectnums!:

== Unnumbered Section

For regions of the document where section numbering is turned off, the section numbering will not
be incremented.

Given:
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= Document Title

:sectnums!:

== Colophon Section

== Another Colophon Section

== Last Colophon Section

:sectnums:

== Section One

== Section Two

== Section Three

The sections will be numbered as follows:

Colophon Section

Another Colophon Section

Last Colophon Section

1. Section One

2. Section Two

3. Section Three

Asciidoctor will always curtail incrementing the section number in regions of the document where
section numbers are off.

If sectnums is set on the command line (or API), that overrides the value set in the document header,
but it does not prevent the document from toggling the value for regions of the document.

If sectnums! is set on the command line (or API), then the numbers are disabled regardless of the
setting within the document.



Flexible attributes

The sectnums attribute is referred to as a “flexible attribute”, which means it can
always be changed midstream in the document, even if it is enabled through the
API or CLI. At the time of writing, sectnums is unique in this way, though other
attributes may receive this special status in the future.
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16.7.1. Numbering depth

You can restrict section numbering depth by defining the sectnumlevels (document header-only)
attribute.

:sectnumlevels: 2 ①

① When the sectnumlevels attribute is assigned a value of 2, section titles with levels 3 through 5
are not numbered (i.e., not prefixed with a number).

When the doctype is book, recall that level-1 sections become chapters. Therefore, a sectnumlevels of
4 translates to 3 levels of numbered sections inside each chapter.

Assigning sectnumlevels a value of 0 is effectively the same as disabling section numbering (i.e.,
sectnums!).

16.8. Discrete Headings (aka Floating Titles)
To make a discrete heading, you add the discrete attribute to any section title. A discrete heading is
styled in a manner similar to a section title, but is not part of the section hierarchy (i.e., and thus
excluded from section nesting requirements), it does not enclose subsequent blocks, and it is not
included in the table of contents. The discrete style effectively demotes the section title to a normal
heading.



Alternately, you may use the float attribute to identify a discrete heading. In this
context, the term “float” does not imply layout, meaning it does not float to the left
or right of other content blocks. It just means it’s not anchored to the section
hierarchy.

Here’s an example of a discrete heading in use.

**** ①
Discrete headings are useful for making headings inside of other blocks, like this
sidebar.

[discrete] ②
== Discrete Heading ③

Discrete headings can be used where sections are not permitted.
****

① A delimiter line that indicates the start of a sidebar block.

② Set the discrete attribute above the section title to demote it to a discrete heading.

③ The discrete heading title is designated by one to six equal signs, just like a section title.
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16.9. Section Styles
Asciidoctor provides styles for the frontmatter and backmatter sections commonly found in journal
articles, academic papers, and books. The styles are:

• colophon

• abstract

• preface

• dedication

• part introduction

• appendix

• glossary

• bibliography

• index

These styles are available to the article and book document types, with the exception of the part
introduction style which is exclusive to books.

In general, the section style attribute is set above a level 1 section title or block of text. For instance,
the example below shows how to label a section as an abstract.

[abstract]
== Documentation Abstract

Documentation is a distillation of many long, squiggly adventures.

The structure and usage rules for each section style is explained in Structuring, Navigating, and
Referencing Your Content.

16.10. Sections Summary
Section attributes and values

Attribute Value(s) Example Syntax Comments

sectids n/a :sectids!: Set to auto-generate section IDs
by default.

idprefix _, or user
defined text

:idprefix: id_ Set to prepend string to
generated section ID.

idseparator _, or user
defined
character

:idseparator: - Set to insert character between
words in generated section ID.

sectanchors n/a :sectanchors: Asciidoctor only

sectlinks n/a :sectlinks: Asciidoctor only
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Attribute Value(s) Example Syntax Comments

sectnums n/a :sectnums: Section numbering is off by
default. Can be toggled on or off
in the flow of the document.

sectnumlevels 0-5 :sectnumlevels: 3 Set to autogenerate section
numbers up to level three by
default. Setting a value of 0 has
the same effect as setting
sectnums!.
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Chapter 17. Blocks

 Section Pending

17.1. Title
You can assign a title to any paragraph, list, delimited block, or block macro. In most cases, the title
is displayed immediately above the content. If the content is a figure or image, the title is displayed
below the content.

A block title is defined on a line above the element. The line must begin with a dot (.) and be
followed immediately by the title text.

Here’s an example of a list with a title:

.TODO list
- Learn the AsciiDoc syntax
- Install Asciidoctor
- Write my document

17.2. Metadata
In addition to a title, a block can be assigned additional metadata including:

• Id (i.e., anchor)

• Block name (first positional attribute)

• Block attributes

Here’s an example of a quote block with metadata:

.Gettysburg Address ①
[#gettysburg] ②
[quote, Abraham Lincoln, Address delivered at the dedication of the Cemetery at
Gettysburg] // <3> ④ ⑤
____
Four score and seven years ago our fathers brought forth
on this continent a new nation...

Now we are engaged in a great civil war, testing whether
that nation, or any nation so conceived and so dedicated,
can long endure. ...
____

① Title: Gettysburg Address

② ID: gettysburg, see Defining an Anchor
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③ Block name: quote

④ attribution: Abraham Lincoln (Named block attribute)

⑤ citetitle: Address delivered at the dedication of the Cemetery at Gettysburg (Named block
attribute)


A block can have multiple block attribute lines. The attributes will be aggregated.
If there is a name conflict, the last attribute defined wins.

Some metadata is used as supplementary content, such as the title, whereas other metadata
controls how the block is converted, such as the block name.

17.3. Delimited blocks
The AsciiDoc syntax provides a set of components for including non-paragraph text, such as block
quotes, source code listings, sidebars and tables, in your document. These components are referred
to as delimited blocks because they are surrounded by delimiter lines (e.g., ****).

Here’s an example of a sidebar block:

****
sidebar block
****

Within the boundaries of a delimited block, you can enter any content or blank lines. The block
doesn’t end until the ending delimiter is found. The delimiters around the block determine the type
of block, how the content is processed and converted, and what elements are used to wrap the
content in the output.

17.3.1. Delimiter lines

The boundaries of a delimited block must be balanced. In other words, the opening delimiter line
must be the same length as the closing delimiter line.

For example, the following delimited block is not balanced and therefore invalid:

********
invalid sidebar block
****

When the processor encounters the previous example, it will put the remainder of the content in
the document inside the delimited block (without warning, currently). As far as the processor is
concerned, the closing delimiter is just a line of content. If you want the closing delimiter to be
matched, it must be the same length as the opening delimiter.
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****
valid sidebar block
****

The AsciiDoc Python processor did not require the delimiters to be balanced, but also never
documented that this was permissible. We view AsciiDoc Python’s behavior of matching
unbalanced delimited blocks to be a bug and therefore do not allow it in Asciidoctor.

17.3.2. Optional delimiters

If the content is contiguous (not interrupted by blank lines), you can forgo the use of the block
delimiters and instead use the block name above a paragraph to repurpose it as one of the
delimited block types.

This format is often used for single-line listings:

[listing]
sudo dnf install asciidoc

or single-line quotes:

[quote]
Never do today what you can put off `'til tomorrow.

17.3.3. Masquerading blocks

Some blocks can masquerade as other blocks, a feature which is controlled by the block name.

17.3.4. Nesting blocks

You can nest blocks inside each other. To nest blocks of the same type, add a pair of extra symbols
to the delimiter. For example:

====
This is an example
======
This is an example inside an example
======
====

17.4. Built-in blocks summary
The following table identifies the built-in block names and delimited blocks syntax, their purposes,
and the substitutions performed on their contents.
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Block Block Name Delimiter Purpose Substitution
s

Admonition [<LABEL>] ==== Aside content that demands special
attention; often labeled with a tag or icon

Normal

Comment N/A //// Private notes that are not displayed in the
output

None

Example [example] ==== Designates example content or defines an
admonition block

Normal

Fenced N/A ``` Source code or keyboard input is
displayed as entered

Verbatim

Listing [listing] ---- Source code or keyboard input is
displayed as entered

Verbatim

Literal [literal] .... Output text is displayed exactly as
entered

Verbatim

Open Most block
names

-- Anonymous block that can act as any
block except passthrough or table blocks

Varies

Passthrough [pass] ++++ Unprocessed content that is sent directly
to the output

None

Quote [quote] ____ A quotation with optional attribution Normal

Sidebar [sidebar] **** Aside text and content displayed outside
the flow of the document

Normal

Source [source] ---- Source code or keyboard input to be
displayed as entered

Verbatim

Stem [stem] ++++ Unprocessed content that is sent directly
to an interpreter (such as AsciiMath or
LaTeX math)

None

Table N/A |=== Displays tabular content Varies

Verse [verse] ____ A verse with optional attribution Normal

This table shows the substitutions performed by each substitution group referenced in the previous
table.

Substitution groups

Group Special
characters

Quotes Attributes Replacem
ents

Macros Post
replaceme

nts

Header      

None      

Normal      

Pass      
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Group Special
characters

Quotes Attributes Replacem
ents

Macros Post
replaceme

nts

Verbatim      


Surround an attribute value with single quotes in order to apply normal
substitutions.
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Chapter 18. Paragraph
The bulk of the content in a document is paragraph text. This is why Asciidoctor doesn’t require any
special markup or attributes to specify paragraph content. You can just start typing.

In Asciidoctor, adjacent or consecutive lines of text form a paragraph element. To start a new
paragraph after another element, such as a section title or table, hit the RETURN  key twice to insert a
blank line, and then continue typing your content.

Two paragraphs in an AsciiDoc document

This journey begins one late Monday afternoon in Antwerp.
Our team desperately needs coffee, but none of us dare open the office door.

To leave means code dismemberment and certain death.

The two paragraphs rendered using the default (html5) converter and stylesheet (asciidoctor.css)

This journey begins one late Monday afternoon in Antwerp. Our team desperately needs
coffee, but none of us dare open the office door.

To leave means code dismemberment and certain death.

18.1. Alignment
Asciidoctor provides built-in roles to align the text of a paragraph. The name of the role follows the
pattern text-<alignment>, where <alignment> is one of left, center, right, or justify (e.g., text-center).

Here’s an example of a paragraph with center-aligned text.

[.text-center]
This text is centered.

These built-in text alignment roles are currently supported by the HTML5 and PDF converters.

18.2. Line Breaks
Since adjacent lines of text are combined into a single paragraph when Asciidoctor converts a
document, that means you can wrap paragraph text or put each sentence or phrase on a separate
line. The line breaks won’t appear in the output.

However, if you want the line breaks in a paragraph to be preserved, you can either use a space
followed by a plus sign (+) or set the hardbreaks option on the paragraph. This results in a visible
line break (e.g., <br>) following each line.
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Line breaks preserved using a space followed by the plus sign (+)

Rubies are red, +
Topazes are blue.

Rubies are red,
Topazes are blue.

Line breaks preserved using the hardbreaks option

[%hardbreaks]
Ruby is red.
Java is black.

Ruby is red.
Java is black.

To preserve line breaks throughout your whole document, add the hardbreaks attribute to the
document’s header.

Line breaks preserved throughout the document using the hardbreaks attribute

= Line Break Doc Title
:hardbreaks:

Rubies are red,
Topazes are blue.

You can also preserve line breaks using literal blocks, listing blocks, and verses.

18.3. Lead Style
Apply the lead style to any paragraph, and it will render using a larger font size. The lead style is
assigned to the role attribute. You can set role using the long- or shorthand method.

Setting role using shorthand (.) and assigning it the lead value

[.lead]
This is the ultimate paragraph.

Rendered lead paragraph

This is the ultimate paragraph.
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When you convert a document to HTML using the default stylesheet, the first paragraph of the
preamble is automatically styled as a lead paragraph. To disable this behavior, assign any role to
the first paragraph.

Disabling the automatic lead paragraph styling

[.normal]
This is a normal paragraph, regardless of its position in the document.

The presence of the custom role tells the CSS not to style it as a lead paragraph.
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Chapter 19. Text Formatting
Just as we emphasize certain words and phrases when we speak, we can emphasize them in text
with formatting. This formatting, such as bold or monospace, is indicated by surrounding letters,
words, or phrases with simple markup. When Asciidoctor processes text enclosed by formatting
markup, the markup is replaced by the corresponding HTML or XML tags, depending on your
backend, during the quotes substitution phase.

Text formatting versus quotes

The original AsciiDoc processor calls this markup and its related features quotes, quotes
substitutions, and quoted text. However, in the Asciidoctor documentation, we refer to the
text formatting markup as, you guessed it, text formatting. When you need to control when
text formatting is applied to certain blocks, the substitution attribute is still named quotes, but
we’re considering changing this to a more semantic name in a future Asciidoctor version.

Continue reading to learn how to format letters, words or phrases with the following styles:

☑ bold

☑ italic

☑ curved (smart) quotation marks and apostrophes

☑ subscript and superscript

☑ monospace

☑ highlighted, built-in and custom CSS styles


You may not always want these symbols to indicate text formatting. In those cases,
you’ll need to use additional markup to escape the text formatting markup.

19.1. Bold and Italic
The two most common ways of emphasizing a word is to format it as bold or italic.

To apply bold styling to a word or phrase, place an asterisk (*) at the beginning and end of the text
you wish to format. To bold one or more letters within a string of text, place two asterisks (**)
before and after the letter(s).

Similarly, words and characters within a word are italicized using one (_) or two (__) underscores,
respectively. When you want to bold and italicize text, the bold markup must be the outermost
markup.
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Bold and italic text formatting syntax

_To tame_ the wild wolpertingers we needed to build a *charm*.
But **u**ltimate victory could only be won if we divined the *_true name_* of the
__war__lock.

Result: bold and italic text

To tame the wild wolpertingers we needed to build a charm. But ultimate victory could only
be won if we divined the true name of the warlock.

19.2. Quotation Marks and Apostrophes
Single and double quotation marks are not rendered as curved quotation marks (also known as
smart, curly, typographic or book quotation marks). When entered using the '  and "  key,
Asciidoctor outputs straight (dumb, vertical, typewriter) quotation marks. However, by creating a
set of backticks (`) contained within a set of single quotes (') or double quotes ("), you can tell
Asciidoctor where to output curved quotation marks.

Single and double curved quotation marks syntax

"`What kind of charm?`" Lazarus asked. "`An odoriferous one or a mineral one?`" ①

Kizmet shrugged. "`The note from Olaf's desk says '`wormwood and licorice,`' but these
could be normal groceries for werewolves.`" ②

① To output double curved quotes, enclose a word or phrase in a set of double quotes (") and a set
of backticks (`).

② To output single curved quotes, enclose a word or phrase in a set of single quotes (') and a set of
backticks (`). In this example, the phrase wormwood and licorice should be enclosed in curved
single quotes when the document is rendered.

Rendered curved quotation marks

“What kind of charm?” Lazarus asked. “An odoriferous one or a mineral one?”

Kizmet shrugged. “The note from Olaf’s desk says ‘wormwood and licorice,’ but these could be
normal groceries for werewolves.”

When entered with the '  key, Asciidoctor renders an apostrophe that is directly preceded and
followed by a character, such as in contractions and possessive singular forms, as a curved
apostrophe. This inconsistent handling of apostrophes and quotation marks is a hold over from the
original AsciiDoc processor. An apostrophe directly bounded by two characters is processed during
the replacements substitution phase, not the quotes phase. This is why an apostrophe directly
followed by white space, such as the possessive plural form, is not curved by default.

To render an apostrophe as curved when it is not bound by two characters, mark it as you would a
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single curved quote.

Curved apostrophe syntax

Olaf had been with the company since the `'60s.
His desk overflowed with heaps of paper, apple cores and squeaky toys.
We couldn't find Olaf's keyboard.
The state of his desk was replicated, in triplicate, across all of the werewolves`'
desks.

In the rendered output, note that the plural possessive apostrophe, seen trailing werewolves, is
curved, as is the omission apostrophe before 60s.

Rendered apostrophes

Olaf had been with the company since the ’60s. His desk overflowed with heaps of paper, apple
cores and squeaky toys. We couldn’t find Olaf’s keyboard. The state of his desk was replicated,
in triplicate, across all of the werewolves’ desks.

If you don’t want an apostrophe that is bound by two characters to be rendered as curved, escape it
by preceding it with a backslash (\). The preventing substitutions and passthrough sections detail
additional ways to prevent punctuation substitutions.

Olaf\'s desk ...

Rendered escaped apostrophe

Olaf's desk …

In order to make a possessive, monospaced phrase, you need to switch to unconstrained formatting
and use an explicit typographic apostrophe.

``npm```'s job is to manage the dependencies for your application.

Rendered possessive, monospaced phrase

npm’s job is to manage the dependencies for your application.

The same goes if the monospaced phrase ends in an “s”.

This ``class```' static methods make it easy to operate on files and directories.
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Rendered possessive, monospaced phrase that ends in an “s”

This class’ static methods make it easy to operate on files and directories.

Alternately, you could encode the typographic apostrophe directly in the AsciiDoc source to get the
same result without the need to use unconstrained formatting.

The `class`’ static methods make it easy to operate on files and directories.

19.3. Subscript and Superscript
Subscript and superscript text is common in mathematical expressions and chemical formulas.
When rendered, the size of subscripted and superscripted text is reduced. Subscripted text is placed
at the baseline and superscripted text above the baseline. The size and precise placement of the text
depends on the font and other stylesheet parameters applied to the converted document.

Text is subscripted when you enclose it in a set of tildes (~) and superscripted with a set of carets (^)

Subscript

One tilde (~) on either side of a word or phrase makes it subscript.

Superscript

One caret (^) on either side of a word or phrase makes it superscript.

"`Well the H~2~O formula written on their whiteboard could be part of a shopping list,
but I don't think the local bodega sells E=mc^2^,`" Lazarus replied.

“Well the H2O formula written on their whiteboard could be part of a shopping list, but I don’t
think the local bodega sells E=mc2,” Lazarus replied.


You can write and render equations and formulas in AsciiDoc documents using
MathJax.

19.4. Monospace
In AsciiDoc, a span of text enclosed in a single set of backtick (`) characters is displayed using a
fixed-width (i.e., monospaced) font. Monospace text formatting is typically used to represent text
shown in computer terminals or code editors (often referred to as a codespan).

Monospaced text can be bold and italicized, as long as the markup sets are entered in the right
order. The monospace markup must be the outermost set, then the bold set, and the italic markup
must always be the innermost set.

As with other types of text formatting, if the text is bounded by characters on either side, it must be
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enclosed in a double set of backtick characters (``) in order for the formatting to be applied.

Here’s an example:

"`Wait!`" Indigo plucked a small vial from her desk's top drawer and held it toward
us.
The vial's label read: `E=mc^2^`; the `_E_` represents _energy_, but also pure
_genius!_

Rendered monospace formatted text

“Wait!” Indigo plucked a small vial from her desk’s top drawer and held it toward us. The vial’s
label read: E=mc2; the E represents energy, but also pure genius!

19.4.1. Literal Monospace

Unlike other markup languages, monospaced text in AsciiDoc is not synonymous with literal text.
Instead, it gets interpreted just like normal text. In other words, it’s subject to text substitutions.

This might be surprising at first. But there’s good reason for this difference. In AsciiDoc, you can
take advantage of attribute references and inline macros inside of monospaced text span. The
drawback, of course, is that you have to be careful to escape these special characters if you intend
to output them literally.

One way to prevent the processor from interpreting special characters in monospaced text is to
escape them using backslash characters, just as you would with normal text. However, escaping
individual occurrences that way can be tedious. That’s why AsciiDoc offers a special type of
monospace formatting called the literal monospace.

To make a true literal codespan in AsciiDoc, you must enclose the monospaced text in a
passthrough. Rather than using a single set of backtick characters, you’ll use the combination of the
backtick and plus characters, where the plus characters fall on the inside of the backtick characters
(e.g., `+text+`). The plus characters are a shorthand for the pass:c[] enclosure.

Here’s an example that contains literal, monospaced text.

You can reference the value of a document attribute using the syntax `+{name}+`, where
`name` is the attribute name.

This shorthand syntax can accommodate most of the literal monospace cases. The main exception
is when the text itself contains plus characters. To avoid confusing the processor, you’ll need to
switch to using the more formal passthrough macro to handle these cases.

Here’s an example of literal, monospaced text that contains plus characters.

`pass:[++]` is the increment operator in C.
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Passthroughs are a general purpose utility in AsciiDoc. You can learn about the various passthrough
options in Passthrough Macros.

19.5. Custom Styling With Attributes
When text is enclosed in a set of single or double hash symbols (#), and no style is assigned to it, the
text will be rendered as highlighted text (text wrapped in <mark>).

Highlighted style syntax

Werewolves are #allergic to cinnamon#.

Highlighted text HTML output

<mark>mark element</mark>

Rendered highlighted text

Werewolves are allergic to cinnamon.

Additionally, text marked with hash symbols can be assigned built-in styles, such as big and green.

Built-in CSS class syntax

Do werewolves believe in [small]#small print#? ①

[big]##O##nce upon an infinite loop.

① The first positional attribute is treated as a role. You can assign it a custom or built-in CSS class.

Rendered CSS class styled text

Do werewolves believe in small print?

Once upon an infinite loop.

You can format text with custom styles that you define as well.

Custom CSS class syntax

Type the word [.userinput]#asciidoctor# into the search bar.

When converted to HTML, the word asciidoctor is wrapped in <span> tags and the role userinput is
used as the element’s CSS class.
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HTML output

<span class="userinput">asciidoctor</span>
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Chapter 20. Unordered Lists
If you were to create a list in an e-mail, how would you do it? Chances are, you’d mark list items
using the same characters that Asciidoctor uses to find list items.

In the example below, each list item is marked using an asterisk (*), the AsciiDoc syntax specifying
an unordered list item.

* Edgar Allen Poe
* Sheri S. Tepper
* Bill Bryson

A list item’s first line of text must be offset from the marker (*) by at least one space. If you prefer,
you can indent list items. Blank lines are required before and after a list. Additionally, blank lines
are permitted, but not required, between list items.

Rendered unordered list

• Edgar Allen Poe

• Sheri S. Tepper

• Bill Bryson

You can add a title to a list by prefixing the title with a period (.).

.Kizmet's Favorite Authors
* Edgar Allen Poe
* Sheri S. Tepper
* Bill Bryson

Rendered unordered list with a title

Kizmet’s Favorite Authors

• Edgar Allen Poe

• Sheri S. Tepper

• Bill Bryson

Was your instinct to use a hyphen (-) instead of an asterisk to mark list items? Guess what? That
works too!

- Edgar Allen Poe
- Sheri S. Tepper
- Bill Bryson
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You should reserve the hyphen for lists that only have a single level because the hyphen marker (-)
doesn’t work for nested lists. Now that we’ve mentioned nested lists, let’s go to the next section and
learn how to create lists with multiple levels.

Separating Lists

If you have adjacent lists, they have the tendency to want to fuse together. To force lists apart,
insert a line comment (//) surrounded by blank lines between the two lists. Here’s an
example, where the - text in the line comment indicates the line serves as an “end of list”
marker:

* Apples
* Oranges

//-

* Walnuts
* Almonds

20.1. Nested
To nest an item, just add another asterisk (*) to the marker, and another for each subsequent level.

.Possible DefOps manual locations
* West wood maze
** Maze heart
*** Reflection pool
** Secret exit
* Untracked file in git repository

Rendered nested, unordered list

Possible DefOps manual locations

• West wood maze

◦ Maze heart

▪ Reflection pool

◦ Secret exit

• Untracked file in git repository

In Asciidoctor 1.5.7 and earlier you could only have up to six (6) levels of nesting (assuming one
level uses the hyphen marker).

Since Asciidoctor 1.5.8, you can nest unordered lists to any depth. Keep in mind, however, that
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some interfaces will begin flatting lists after a certain depth. GitHub starts flattening list after 10
levels of nesting.

* level 1
** level 2
*** level 3
**** level 4
***** level 5
* level 1

• level 1

◦ level 2

▪ level 3

▪ level 4

▪ level 5

• level 1

While it would seem as though the number of asterisks represents the nesting level, that’s not how
depth is determined. A new level is created for each unique marker encountered. However, it’s
much more intuitive to follow the convention that the number of asterisks equals the level of
nesting. After all, we’re shooting for plain text markup that is readable as is.

20.2. Complex List Content
Aside from nested lists, all of the list items you’ve seen only have one line of text. But like with
regular paragraph text, the text in a list item can wrap across any number of lines, as long as all the
lines are adjacent. The wrapped lines can be indented and they will still be treated as normal
paragraph text. For example:

* The header in AsciiDoc is optional, but if
it is used it must start with a document title.

* Optional Author and Revision information
immediately follows the header title.

* The document header must be separated from
  the remainder of the document by one or more
  blank lines and cannot contain blank lines.

94



• The header in AsciiDoc is optional, but if it is used it must start with a document title.

• Optional Author and Revision information immediately follows the header title.

• The document header must be separated from the remainder of the document by one or
more blank lines and cannot contain blank lines.


When items contain more than one line of text, leave a blank line before the next
item to make the list easier to read.

A list item may contain any type of AsciiDoc content, including paragraphs, delimited blocks, and
block macros. You just need to attach them to the list item.

20.2.1. List continuation

To add additional paragraphs or other block elements to a list item, you must “attach” them (in a
series) using a list continuation. A list continuation is a + symbol on a line by itself, immediately
adjacent to the block being attached.

Here’s an example:

* The header in AsciiDoc must start with a document title.
+
The header is optional.

• The header in AsciiDoc must start with a document title.

The header is optional.

Using the list continuation, you can attach any number of block elements to a list item. Each block
must be preceded by a list continuation to form a chain of blocks.

Here’s an example that attaches both a listing block and an admonition paragraph to the first item:
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* The header in AsciiDoc must start with a document title.
+
----
= Document Title
----
+
Keep in mind that the header is optional.

* Optional Author and Revision information immediately follows the header title.
+
----
= Document Title
Doc Writer <doc.writer@asciidoc.org>
v1.0, 2013-01-01
----

Here’s how the source is rendered:

A list with complex content

• The header in AsciiDoc must start with a document title.

= Document Title

Keep in mind that the header is optional.

• Optional Author and Revision information immediately follows the header title.

= Document Title
Doc Writer <doc.writer@asciidoc.org>
v1.0, 2013-01-01

If you’re attaching more than one block to a list item, you’re strongly encouraged to wrap the
content inside an open block. That way, you only need a single list continuation line to attach the
open block to the list item. Within the open block, you write like you normally would, no longer
having to worry about adding list continuations between the blocks to keep them attached to the
list item.

Here’s an example of wrapping complex list content in an open block:
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* The header in AsciiDoc must start with a document title.
+
--
Here's an example of a document title:

----
= Document Title
----

NOTE: The header is optional.
--

Here’s how that content is rendered:

A list with complex content wrapped in an open block

• The header in AsciiDoc must start with a document title.

Here’s an example of a document title:

= Document Title

 The header is optional.

The open block wrapper is also useful if you’re including content from a shared file into a list item.
For example:

* list item
+
--
include::shared-content.adoc[]
--

By wrapping the include directive in an open block, the content can be used unmodified.

The only limitation of this technique is that the content itself may not contain an open block (since
open blocks cannot be nested).

20.2.2. Dropping the principal text

If the principal text of a list item is blank, the node for the principal text is dropped. This is how you
can get the first block (such as a listing block) to line up with the list marker. You can make the
principal text blank by using the {blank} attribute reference.

Here’s an example of a list that has items with only complex content.
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. {blank}
+
----
print("one")
----
. {blank}
+
----
print("one")
----

Here’s how the source is rendered:

A list with complex content

1.
print("one")

2.
print("one")

20.2.3. Attaching to an ancestor list

You may find that you need to attach block content to a parent list item instead of the current one.
In other words, you want to attach the block content to the parent list item so it becomes a sibling
of the child list. To do this, you add a blank line before the list continuation. The blank line signals
to the list continuation to move out of the current list so it attaches the block to the last item of the
parent list.

Here’s an example of a paragraph that’s attached to the parent list item, placing it adjacent to the
child list (instead of inside of it).

* parent list item
** child list item

+
paragraph attached to parent list item

Here’s how the source is rendered:
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A block attached to the parent list item

• parent list item

◦ child list item

paragraph attached to parent list item

Each blank line that precedes the list continuation signals a move up one level of nesting. Here’s an
example that shows how to attach a paragraph to a grandparent list item using two leading blank
lines:

* grandparent list item
** parent list item
*** child list item

+
paragraph attached to grandparent list item

Here’s how the source is rendered:

A block attached to the grandparent list item

• grandparent list item

◦ parent list item

▪ child list item

paragraph attached to grandparent list item

Using blank lines to back out of the nesting may feel fragile. A more robust way to accomplish the
same thing is to enclose the nested lists in an open block. That way, it’s clear where the nested list
ends and the enclosing list continues.

* grandparent list item
+
--
** parent list item
*** child list item
--
+
paragraph attached to grandparent list item

Here’s how the source is rendered:
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A nested block enclosed in an open block

• grandparent list item

◦ parent list item

▪ child list item

paragraph attached to grandparent list item

As you’ve learned in this section, the primary text of a list item can wrap to any number of adjacent
lines. You can also attach any type of content to a list item using the list continuation. Combining
those features with the open block makes it even easier to create lists with complex content.

20.3. Custom Markers
Asciidoctor offers numerous bullet styles for lists. The list marker (bullet) is set using the list’s block
style.

The unordered list marker can be set using any of the following block styles:

• square

• circle

• disc

• none or no-bullet (indented, but no bullet)

• unstyled (no indentation or bullet) (HTML only)

 These styles are supported by the default Asciidoctor stylesheet.

When present, the style name is assigned to the unordered list element as follows:

For HTML

the style name is assigned to the class attribute on the <ul> element.

For DocBook

the style name is assigned to the mark attribute on the <itemizedlist> element.

Here’s an unordered list that has square bullets:

[square]
* one
* two
* three
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▪ one

▪ two

▪ three

20.4. Checklist
List items can be marked complete using checklists.

Checklists (i.e., task lists) are unordered lists that have items marked as checked ([*] or [x]) or
unchecked ([ ]). Here’s an example:

Checklist syntax

* [*] checked
* [x] also checked
* [ ] not checked
*     normal list item

Rendered checklist

☑ checked

☑ also checked

☐ not checked

normal list item

 Not all items in the list have to be checklist items, as the previous example shows.

When checklists are converted to HTML, the checkbox markup is transformed into an HTML
checkbox with the appropriate checked state. The data-item-complete attribute on the checkbox is
set to 1 if the item is checked, 0 if not. The checkbox is used in place of the item’s bullet.

Since HTML generated by Asciidoctor is usually static, the checkbox is set as disabled to make it
appear as a simple mark. If you want to make the checkbox interactive (i.e., clickable), add the
interactive option to the checklist (shown here using the shorthand syntax for Options):

Checklist with interactive checkboxes

[%interactive]
* [*] checked
* [x] also checked
* [ ] not checked
*     normal list item
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Rendered checklist with interactive checkboxes

☑ checked

☑ also checked

☐ not checked

normal list item

As a bonus, if you enable font-based icons, the checkbox markup (in non-interactive lists) is
transformed into a font-based icon!

Rendered checklist with font-based checkboxes

☑ checked

☑ also checked

☐ not checked

normal list item
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Chapter 21. Ordered Lists
Sometimes, we need to number the items in a list. Instinct might tell you to prefix each item with a
number, like in this next list:

1. Protons
2. Electrons
3. Neutrons

The above works, but since the numbering is obvious, the AsciiDoc processor will insert the
numbers for you if you omit them:

. Protons

. Electrons

. Neutrons

1. Protons

2. Electrons

3. Neutrons

If you decide to use number for your ordered list, you have to keep them sequential. This differs
from other lightweight markup languages. It’s one way to adjust the numbering offset of a list. For
instance, you can type:

4. Step four
5. Step five
6. Step six

However, in general the best practice is to use the start attribute to configure this sort of thing:

[start=4]
. Step four
. Step five
. Step six

To present the items in reverse order, add the reversed option:
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[%reversed]
.Parts of an atom
. Protons
. Electrons
. Neutrons

Parts of an atom

3. Protons

2. Electrons

1. Neutrons

You can give a list a title by prefixing the line with a dot immediately followed by the text (without
leaving any space after the dot).

Here’s an example of a list with a title:

.Parts of an atom

. Protons

. Electrons

. Neutrons

Parts of an atom

1. Protons

2. Electrons

3. Neutrons

21.1. Nested
You create a nested item by using one or more dots in front of each the item.

. Step 1

. Step 2

.. Step 2a

.. Step 2b

. Step 3

AsciiDoc selects a different number scheme for each level of nesting. Here’s how the previous list
renders:
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A nested ordered list

1. Step 1

2. Step 2

a. Step 2a

b. Step 2b

3. Step 3



Like with the asterisks in an unordered list, the number of dots in an ordered list
doesn’t represent the nesting level. However, it’s much more intuitive to follow
this convention:

# of dots = level of nesting

Again, we are shooting for plain text markup that is readable as is.

You can mix and match the three list types, ordered, unordered, and description, within a single
hybrid list. Asciidoctor works hard to infer the relationships between the items that are most
intuitive to us humans.

Here’s an example of nesting an unordered list inside of an ordered list:

. Linux
* Fedora
* Ubuntu
* Slackware
. BSD
* FreeBSD
* NetBSD

1. Linux

◦ Fedora

◦ Ubuntu

◦ Slackware

2. BSD

◦ FreeBSD

◦ NetBSD

You can spread the items out and indent the nested lists if that makes it more readable for you:
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. Linux

  * Fedora
  * Ubuntu
  * Slackware

. BSD

  * FreeBSD
  * NetBSD

The description list section demonstrates how to combine all three list types.

21.2. Numbering Styles
For ordered lists, Asciidoctor supports the numeration styles such as lowergreek and decimal-
leading-zero.

The full list of numeration styles that can be applied to an ordered list are as follows:

Asciidoctor ordered list numeration styles

Block style CSS list-style-type

arabic decimal

decimal&ast; decimal-leading-zero

loweralpha lower-alpha

upperalpha upper-alpha

lowerroman lower-roman

upperroman upper-roman

lowergreek&ast; lower-greek

&ast; These styles are only supported by the HTML converters.

Here are a few examples showing various numeration styles as defined by the block style shown in
the header row:

[arabic]&ast; [decimal] [loweralpha] [lowergreek]

1. one

2. two

3. three

01. one

02. two

03. three

a. one

b. two

c. three

α. one

β. two

γ. three

&ast; Default numeration if block style is not specified
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Custom numeration styles can be implemented using a custom role. Define a new
class selector (e.g., .custom) in your stylesheet that sets the list-style-type
property to the value of your choice. Then, assign the name of that class as a role
on any list to which you want that numeration applied.

When the role shorthand (.custom) is used on an ordered list, the numeration style is no longer
omitted.

You can override the number scheme for any level by setting its style (the first positional entry in a
block attribute list). You can also set the starting number using the start attribute:

["lowerroman", start=5]
. Five
. Six
[loweralpha]
.. a
.. b
.. c
. Seven

v. Five

vi. Six

a. a

b. b

c. c

vii. Seven


The start attribute must be a number, even when using a different numeration
style. For instance, to start an alphabetic list at letter "c", set the numeration style
to loweralpha and the start attribute to 3.
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Chapter 22. Description List
A description list (often abbreviate as dlist) is useful when you need to include a description or
supporting text for one or more terms. Each item in a description list consists of:

• one or more terms

• a separator following each term (typically a double colon, ::)

• at least one space or endline

• the supporting content (either text, attached blocks, or both)

Here’s an example of a description list that identifies parts of a computer:

CPU:: The brain of the computer.
Hard drive:: Permanent storage for operating system and/or user files.
RAM:: Temporarily stores information the CPU uses during operation.
Keyboard:: Used to enter text or control items on the screen.
Mouse:: Used to point to and select items on your computer screen.
Monitor:: Displays information in visual form using text and graphics.

By default, the content of each item is displayed below the description when rendered. Here’s a
preview of how this list is rendered:

A basic description list

CPU

The brain of the computer.

Hard drive

Permanent storage for operating system and/or user files.

RAM

Temporarily stores information the CPU uses during operation.

Keyboard

Used to enter text or control items on the screen.

Mouse

Used to point to and select items on your computer screen.

Monitor

Displays information in visual form using text and graphics.

If you want the description and content to appear on the same line, add the horizontal style to the
list.
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[horizontal]
CPU:: The brain of the computer.
Hard drive:: Permanent storage for operating system and/or user files.
RAM:: Temporarily stores information the CPU uses during operation.

CPU The brain of the computer.

Hard drive Permanent storage for operating system and/or user files.

RAM Temporarily stores information the CPU uses during operation.

The content of a description list can be any AsciiDoc element. For instance, we could rewrite the
grocery list from above so that each aisle is a description rather than a parent outline list item.

Dairy::
* Milk
* Eggs
Bakery::
* Bread
Produce::
* Bananas

Dairy

• Milk

• Eggs

Bakery

• Bread

Produce

• Bananas

Description lists are quite lenient about whitespace, so you can spread the items out and even
indent the content if that makes it more readable for you:
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Dairy::

  * Milk
  * Eggs

Bakery::

  * Bread

Produce::

  * Bananas

Finally, you can mix and match the three list types within a single hybrid list. Asciidoctor works
hard to infer the relationships between the items that are most intuitive to us humans.

Here’s a list that mixes description, ordered, and unordered list items:

Operating Systems::
  Linux:::
    . Fedora
      * Desktop
    . Ubuntu
      * Desktop
      * Server
  BSD:::
    . FreeBSD
    . NetBSD

Cloud Providers::
  PaaS:::
    . OpenShift
    . CloudBees
  IaaS:::
    . Amazon EC2
    . Rackspace

Here’s how the list is rendered:
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A hybrid list

Operating Systems

Linux

1. Fedora

◦ Desktop

2. Ubuntu

◦ Desktop

◦ Server

BSD

1. FreeBSD

2. NetBSD

Cloud Providers

PaaS

1. OpenShift

2. CloudBees

IaaS

1. Amazon EC2

2. Rackspace

You can include more complex content in a list item as well.

22.1. Question and Answer Style List
Q&A

[qanda]
What is Asciidoctor?::
  An implementation of the AsciiDoc processor in Ruby.
What is the answer to the Ultimate Question?:: 42

1. What is Asciidoctor?

An implementation of the AsciiDoc processor in Ruby.

2. What is the answer to the Ultimate Question?

42
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Chapter 23. Tables
Tables are one of the most intricate, yet refined areas of the AsciiDoc syntax. Armed with a bit of
knowledge, you should discover that they are both easy to create and easy to read in raw form. Yet,
under all that simplicity, they are remarkably sophisticated.

Tables are delimited by |=== and made up of cells. The default table data format is PSV (Prefix
Separated Values), which means that the processor creates a new cell each time it encounters a
vertical bar (|). Cells are grouped into rows. Each row must share the same number of cells, taking
into account any column or row spans. Then, each consecutive cell in a row is placed in a separate
column.

The simple table example below consists of two columns and three rows.

Simple table

|=== ①
②
| Cell in column 1, row 1 | Cell in column 2, row 1  ③
④
| Cell in column 1, row 2 | Cell in column 2, row 2

| Cell in column 1, row 3 | Cell in column 2, row 3

|=== ①

① The table’s content boundaries are defined by a vertical bar followed by three equal signs (|===).

② Inserting a blank line before the first row is a trick to ensure the first row is not treated as the
table header.

③ The new cell is marked by a vertical bar (|).

④ Rows can optionally be separated by any number of blank lines.

Result: Rendered simple table

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Cell in column 1, row 3 Cell in column 2, row 3

Like with all blocks, you can add a role to a table using the role attribute. The role attribute
becomes a CSS class when converted to HTML. The preferred shorthand for assigning the role
attribute is to put the role name in the first position of the block attribute list prefixed with a .
character, as shown here:
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[.rolename]
|===

| Cell in column 1, row 1 | Cell in column 2, row 1 | Cell in column 3, row 1

| Cell in column 1, row 2 | Cell in column 2, row 2 | Cell in column 3, row 2

|===

Leading and trailing spaces around cell content is stripped and, therefore, don’t affect the table’s
layout when rendered. The two examples below illustrate how leading and trailing spaces don’t
change the rendered table’s layout.

Cell content adjacent to the |

|===

|Cell in column 1, row 1|Cell in column 2, row 1

|===

Result: Rendered table when cell content was entered adjacent to the |

Cell in column 1, row 1 Cell in column 2, row 1

Cell content with varying leading and trailing spaces

|===

| Cell in column 1, row 1        |          Cell in column 2, row 1

|===

Result: Rendered table when cell content was bounded by varying leading and trailing spaces

Cell in column 1, row 1 Cell in column 2, row 1

There are multiple ways to group cells into a row. The cells in a row can be placed on:

a. the same line

b. consecutive, individual lines

c. a combination of a and b

113



Cells on the same line

|===

|Cell in column 1, row 1 |Cell in column 2, row 1 |Cell in column 3, row 1

|Cell in column 1, row 2 |Cell in column 2, row 2 |Cell in column 3, row 2

|===

Result: Rendered table when multiple cells where entered on the same line

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

When the cells of a row are individually entered on consecutive lines, the cols attribute is needed
to specify the number of columns in the table. If the cols attribute is not set, the first non-blank line
inside the block delimiter (|===) determines the number of columns.

Cells on consecutive, individual lines

[cols="3*"] ①
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

① The cols attribute states that this table has three columns. The * is a repeat operator which is
explained in the column specifiers section.

Result: Rendered table when cells where listed on consecutive, individual lines

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Rows can be formed from adjacent lines of individual cells and cells listed on the same line.
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Cells on the same line and individual lines

[cols="3*"]
|===
|Cell in column 1, row 1 |Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2 |Cell in column 3, row 2
|===

Result: Cells on the same line and individual lines

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The next sections describe and demonstrate the variety of ways you can customize table cells, rows
and columns.

23.1. Columns
The number of columns in a table is determined by the number of cells found in the first non-blank
line after the table delimiter (|===) or by the values assigned to the cols attribute.

For example, the syntax in the two examples below will both converted to a table with two
columns.

|===

|Cell in column 1, row 1 |Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2

|===

Result: Rendered table with two columns as defined by the number of cells in the first row

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2
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[cols="2*"]
|===

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2

|===

Result: Rendered table with two columns as defined by the cols attribute

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

When a single number is assigned to the cols attribute, its value indicates the number of columns.
Each column will be the same width. However, the number of columns can also be assigned as a
comma delimited list. The number of entries in the list determines the number of columns.

The comma delimited list below creates a table with four columns of equal width.

[cols="1,1,1,1"]

This syntax provides that same result:

[cols="4*"]

Now, let’s talk about that asterisk in the syntax above.

23.2. Column Formatting
The AsciiDoc syntax provides a variety of ways to control the size, style and layout of content
within columns. These specifiers can be applied to whole columns.

To apply a specifier to a column, you must set the cols attribute and assign it a value. A column
specifier can contain any of the following components:

• multiplier

• align

• width

• style

Each component is optional.
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The multiplier operator (*) is used when you want a specifier to apply to more than one consecutive
column. If used, the multiplier must always be placed at the beginning of the specifier.

For example:

[cols="3*"] ①
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

① The table will consist of three columns, as indicated by the 3. The * operator ensures that the
default layout and style will be applied to all of the columns.

Result: Rendered table with multiplier applied

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The alignment component allows you to horizontally or vertically align a column’s content. Content
can be horizontally aligned left (<), center (^), or right (>).

To horizontally center the content in all of the columns, add the ^ operator after the multiplier.

[cols="3*^"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with horizontal, center alignment applied to all columns

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

What if you only want to center the content in the last column? Assign the default styles to the
preceding columns, and ^ to the last column in a comma separated list.
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[cols="2*,^"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with horizontal, center alignment applied to last column

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Let’s specify a different horizontal alignment for each column.

[cols="<,^,>"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with a different horizontal alignment for each column

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

You’ll notice that the content in the examples above is only centered on the horizontal. It can also
be aligned vertically when the alignment operator is prefixed with a dot (.). Content can be
vertically aligned to the top (<), middle (^), or bottom (>) of a cell.

To vertically align the content to the middle of the cells in all of the columns, add a . and then the ^
operator after the multiplier.
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[cols="3*.^"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with vertical, middle alignment applied to all columns

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

If you only want to align the content to the bottom of each cell in the last column, you’d assign the
default styles to the preceding columns, and > to the last column in a comma separated list.

[cols="2*,.>"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with vertical, bottom alignment applied to last column

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Let’s specify a different vertical alignment for each column.

[cols=".<,.^,.>"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===
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Result: Rendered table with a different vertical alignment for each column

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Finally, we’ll also horizontally center the content in the last column.

[cols=".<,.^,^.>"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Rendered table with a different vertical alignment for each column and horizontal, center
alignment in the last column

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

When both a horizontal and vertical alignment is assigned to a column, the horizontal alignment
operator must precede the vertical operator.

The width component sets the width of a column. Its value can be a proportional integer (the
default is 1) or a percentage (1 to 99).

[cols="1,2,6"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with column sizes adjusted by a proportional integer

Cell in
column 1,
row 1

Cell in column 2,
row 1

Cell in column 3, row 1
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Cell in
column 1,
row 2

Cell in column 2,
row 2

Cell in column 3, row 2

When assigning percentage values to the cols attribute, you do not need to include the percent sign
(%).

[cols="50,20,30"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with column sizes adjusted by a percentage

Cell in column 1, row 1 Cell in column 2,
row 1

Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2,
row 2

Cell in column 3, row 2

Let’s create a table with custom widths and alignments.

[cols=".<2,.^5,^.>3"]
|===
|Cell in column 1, row 1 with lots and lots and lots and lots of content
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2 and another bucket of content, and then a jelly roll of
content
|===

Result: Rendered table with variable widths and alignments

Cell in column 1,
row 1 with lots
and lots and lots
and lots of content

Cell in column 2, row 1

Cell in column 3, row 1
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Cell in column 1,
row 2

Cell in column 2, row 2

Cell in column 3, row 2 and
another bucket of content,

and then a jelly roll of
content

The style component must always be located at the end of the specifier. When no style name is
provided column contents will be processed as regular inline text.

The column styles are described in the table below.

Style Name Value Description

AsciiDoc a Supports block-level elements (paragraphs,
delimited blocks, and block macros). This style
effectively creates a nested, standalone AsciiDoc
document. Implicit attributes such as doctitle
from the parent document will be shadowed.
Custom attributes are inherited.

Emphasis e Text is italicized

Header h Header styles are applied to the column

Literal l Column content is treated as if it were inside a
literal block

Monospaced m Text is rendered in monospaced font

None (default
style)

d Text is handled like a normal paragraph.
Supports all markup (i.e., inline formatting,
inline macros) that is permitted in a paragraph.

Strong s Text is bolded

Verse v Column content is treated as if it were inside a
verse block

Let’s apply the header style to the first column, the monospaced style to the second, the strong style
to the third, and the emphasis style to the fourth.

[cols="h,m,s,e"]
|===
|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1
|Cell in column 4, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|Cell in column 4, row 2
|===
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Result: Rendered table with a header, monospaced, and strong styled column

Cell in column 1,
row 1

Cell in column 2,
row 1

Cell in column 3,
row 1

Cell in column 4, row
1

Cell in column 1,
row 2

Cell in column 2,
row 2

Cell in column 3,
row 2

Cell in column 4, row
2

Specifiers can also be applied to individual cells.

23.3. Cell Formatting
In addition to sharing many of the column specifier capabilities, cell specifiers allow cells to span
rows and columns. Like a column specifier, a cell specifier is made up of components. These
components, listed and defined below, are all optional.

• span

• align

• style

A cell specifier is prefixed directly to the cell delimiter (|) preceding the content you want to
customize.

The span component can duplicate a cell or have it span multiple rows or columns.

To duplicate a cell in multiple, consecutive columns, prefix the | with the multiplication factor and
the * operator.

Cell duplicated across three columns

|===

|Cell in column 1, row 1 |Cell in column 2, row 1 |Cell in column 3, row 1

3*|Same cell content in columns 1, 2, and 3

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3

|===

Result: Rendered table where cell was duplicated across three columns

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Same cell content in
columns 1, 2, and 3

Same cell content in
columns 1, 2, and 3

Same cell content in
columns 1, 2, and 3

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3
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To have a cell span multiple, consecutive columns, prefix the | with the span factor and the +
operator.

Cell spanning three columns

|===

|Cell in column 1, row 1 |Cell in column 2, row 1 |Cell in column 3, row 1

3+|Content in a single cell that spans columns 1, 2, and 3

|Cell in column 1, row 3
|Cell in column 2, row 3
|Cell in column 3, row 3

|===

Result: Rendered table where cell spans three columns

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Content in a single cell that spans columns 1, 2, and 3

Cell in column 1, row 3 Cell in column 2, row 3 Cell in column 3, row 3

If you want to have a cell span multiple, consecutive rows, prefix the span factor with a dot (.).

Cell spanning two rows

|===

|Cell in column 1, row 1 |Cell in column 2, row 1 |Cell in column 3, row 1

.2+|Content in a single cell that spans rows 2 and 3
|Cell in column 2, row 2
|Cell in column 3, row 2

|Cell in column 2, row 3
|Cell in column 3, row 3

|===

Result: Rendered table where a cell spans two rows

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Content in a single cell that
spans rows 2 and 3

Cell in column 2, row 2 Cell in column 3, row 2

Cell in column 2, row 3 Cell in column 3, row 3

Of course you can combine spanning over columns and rows. The number before the dot (.) is the
number of columns to span and the number after the dot (.) is the number of rows to span.
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Cell spanning columns and rows

|===

|Column 1, row 1 |Column 2, row 1 |Column 3, row 1 |Column 4, row 1

|Column 1, row 2
2.3+|Content in a single cell that spans over rows and columns
|Column 4, row 2

|Column 1, row 3
|Column 4, row 3

|Column 1, row 4
|Column 4, row 4
|===

Result: Rendered table where a cell spans over columns and rows

Column 1, row 1 Column 2, row 1 Column 3, row 1 Column 4, row 1

Column 1, row 2 Content in a single cell that spans over
rows and columns

Column 4, row 2

Column 1, row 3 Column 4, row 3

Column 1, row 4 Column 4, row 4

The alignment component for cells works the same as the column specifier alignment component.

Cells aligned horizontally, vertically, and across a span of three columns

[cols="3"]
|===
^|Prefix the `{vbar}` with `{caret}` to center content horizontally
<|Prefix the `{vbar}` with `<` to align the content to the left horizontally
>|Prefix the `{vbar}` with `>` to align the content to the right horizontally

.^|Prefix the `{vbar}` with a `.` and `{caret}` to center the content in the cell
vertically
.<|Prefix the `{vbar}` with a `.` and `<` to align the content to the top of the cell
.>|Prefix the `{vbar}` with a `.` and `>` to align the content to the bottom of the
cell

3+^.^|This content spans three columns (`3{plus}`) and is centered horizontally
(`{caret}`) and vertically (`.{caret}`) within the cell.

|===

Result: Rendered cells aligned horizontally, vertically, and across a span of three columns
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Prefix the | with ^ to center
content horizontally

Prefix the | with < to align
the content to the left
horizontally

Prefix the | with > to align
the content to the right

horizontally

Prefix the | with a . and ^ to
center the content in the cell
vertically

Prefix the | with a . and < to
align the content to the top
of the cell

Prefix the | with a . and > to
align the content to the
bottom of the cell

This content spans three columns (3+) and is centered horizontally (^) and vertically (.^)
within the cell.


To use a pipe (|) within the content of a cell without creating a new cell, you must
use the {vbar} attribute.

The style component can also be applied to individual cells. For example, you can apply the
AsciiDoc element styles to an individual cell by prefixing the vertical bar with an a.

Comparing cells using AsciiDoc styles and no AsciiDoc styles

[cols="2"]
|===

a|This cell is prefixed with an `a`, so the processor interprets the following lines
as an AsciiDoc list.

* List item 1
* List item 2
* List item 3
|This cell *is not* prefixed with an `a`, so the processor does not interpret the
following lines as an AsciiDoc list.

* List item 1
* List item 2
* List item 3

a|This cell is prefixed with an `a`, so the processor honors the `lead` style on the
following paragraph.

[.lead]
I am a paragraph styled with the lead attribute.
|This cell *is not* prefixed with an `a`, so the processor does not honor the `lead`
style on the following paragraph.

[.lead]
I am a paragraph styled with the lead attribute.
|===

Result: Rendered table comparing cells using AsciiDoc styles and no AsciiDoc styles
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This cell is prefixed with an a, so the
processor interprets the following lines as
an AsciiDoc list.

• List item 1

• List item 2

• List item 3

This cell is not prefixed with an a, so the
processor does not interpret the following
lines as an AsciiDoc list.

* List item 1 * List item 2 * List item 3

This cell is prefixed with an a, so the
processor honors the lead style on the
following paragraph.

I am a paragraph styled with the
lead attribute.

This cell is not prefixed with an a, so the
processor does not honor the lead style on
the following paragraph.

[.lead] I am a paragraph styled with the
lead attribute.

Source code listing can be placed inside cells by using the listing syntax.

Cells with source code listing

|===
|Source Code 1 |Source Code 2

a|
[source,python]
----
import os
print "%s" %(os.uname())
----

a|
[source,python]
----
import os
print ("%s" %(os.uname()))
----
|===

Result: Rendered table with cells containing source code listing

Source Code 1 Source Code 2

import os
print "%s" %(os.uname())

import os
print ("%s" %(os.uname()))
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For the grand finale, let’s apply a variety of specifiers to individual cells.

Building a variety of cell specifiers

|===

2*>m|This content is duplicated across two columns.

It is aligned right horizontally.

And it is monospaced.

.3+^.>s|This cell spans 3 rows. The content is centered horizontally, aligned to the
bottom of the cell, and strong.
e|This content is emphasized.

.^l|This content is aligned to the top of the cell and literal.

v|This cell contains a verse
that may one day expound on the
wonders of tables in an
epic sonnet.

|===

Result: Rendered table featuring a variety of cell specifiers

This content is duplicated across two
columns.

It is aligned right horizontally.

And it is monospaced.

This content is duplicated across two
columns.

It is aligned right horizontally.

And it is monospaced.

This cell spans 3 rows. The content is
centered horizontally, aligned to the

bottom of the cell, and strong.

This content is emphasized.

This content is aligned to the top of
the cell and literal.

This cell contains a verse that may one day
expound on the wonders of tables in an
epic sonnet.

23.4. Header Row
The first row of a table is promoted to a header row if the header option is set (either explicitly or
implicitly).

You can enable the header option by adding the header keyword to the comma-separated list of
values in the options attribute on the table. You can also enable the header option by adding the
%header directive to the table style (the first positional attribute).
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In the example below, the table has an attribute list containing an options attribute that includes
the header option.

Table with the header value assigned to the options attribute

[cols=2*,options="header"]
|===
|Name of Column 1
|Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Result: Rendered table when the header value is assigned to the options attribute

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Alternately, you can define the header row based on how you layout the table. Asciidoctor use the
following conventions to determine when the first row should become the header row:

1. The first line of content inside the table block delimiters is not empty.

2. The second line of content inside the table block delimiters is empty.

3. The options attribute has not been specified in the block attributes (prior to 1.5.5).

As seen in the result of the example below, if all of these rules hold, then the first row of the table is
treated as a header.

Table that has an implicit header row

|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Result: Rendered table when the header row was assigned implicitly

129



Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

If you want to suppress this implicit behavior of promoting the first row to a header row, set the
option value noheader (or add the %noheader directive to the table style).

Notice that when the implicit method of assigning the header row is used, it’s not necessary to set
the cols attribute. That’s because the number of columns are determined by the number of cells in
the first line if the cols attribute is absent.



We’re considering using a similar convention for enabling the footer in the future.
Thus, if you rely on this convention to enable the header row, it’s advised that you
not put all the cells in the last row on the same line unless you intend on making it
the footer row.

23.5. Footer Row
The last row of a table can be styled as a footer by adding the footer keyword to the options
attribute.

[options="footer"]
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2

|Footer in column 1, row 3
|Footer in column 2, row 3
|===

Result: Table rendered with a footer

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Footer in column 1, row 3 Footer in column 2, row 3

23.6. Table Width
By default, a table will span the width of the content area. To constrain the width of the table to a
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fixed value, set the width attribute in the table’s attribute list. The width is an integer percentage
value ranging from 1 to 100. The % sign is optional.

Table with width set to 75%

[width=75%]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with a width of 75%

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

Alternately, you can make the width fit the content by setting the autowidth option. The columns
inherit this setting, so individual columns will also be sized according to the content.

Table using autowidth

[%autowidth]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: The width of the table is sized to accomodate the automatic column
widths

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

131



If you want each column to have an automatic width, but want the table to span the width of the
content area, add the stretch role to the table or set the width attribute to 100%.

Full-width table with autowidth columns

[%autowidth.stretch]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Columns are sized to the content, but table spans the width of the page

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

 The autowidth option is not recognized by the DocBook converter.

If you want to apply autowidth only to certain columns, use the special value ~ as the width of the
column. In this case, width values are assumed to be a percentage value (i.e., 100-based).

Table with both fixed and autowidth columns

[cols="25h,~,~"]
|===
|small |as big as the column needs to be |the rest
|===

23.7. Table Borders
The borders on a table are controlled using the frame and grid attributes. You can combine these
two attributes to achieve a variety of border styles for your tables.

23.7.1. Frame

The border around a table is controlled using the frame attribute. By default, the frame attribute is
assigned the all value, which draws a border on each side of the table. If you set the frame
attribute, you can override the default value with the values topbot, sides or none.

The topbot value draws a border on the top and bottom of the table.
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[frame=topbot]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with frame=topbot

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The sides value draws a border on the right and left side of the table.

[frame=sides]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with frame=sides

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The none value removes the borders around the table.
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[frame=none]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with frame=none

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

23.7.2. Grid

The borders between the cells in a table are controlled using the grid attribute. By default, the grid
attribute is assigned the all value, which draws a border between all cells. If you set the grid
attribute, you can override the default value with the values rows, cols or none.

The rows value draws a border between the rows of the table.

[grid=rows]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with grid=rows

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The cols value draws borders between the columns.
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[grid=cols]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with grid=cols

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

The none value removes all borders between the cells.

[grid=none]
|===
|Name of Column 1 |Name of Column 2 |Name of Column 3

|Cell in column 1, row 1
|Cell in column 2, row 1
|Cell in column 3, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|Cell in column 3, row 2
|===

Result: Table rendered with grid=none

Name of Column 1 Name of Column 2 Name of Column 3

Cell in column 1, row 1 Cell in column 2, row 1 Cell in column 3, row 1

Cell in column 1, row 2 Cell in column 2, row 2 Cell in column 3, row 2

23.8. Striping
Starting with Asciidoctor 2.0, the rows in the body of a table are not shaded. You can configure the
rows to be striped (as in zebra stripes) using an attribute. Use the stripes table attribute to
configure the stripes for a single table. Use the table-stripes document attribute to configure
stripes for all tables.
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Striping is done by adding a background color to the specified rows. The stripes attribute accepts
the following values:

• none - no rows are shaded (default in Asciidoctor >= 2.0)

• even - even rows are shaded (default in Asciidoctor < 2.0)

• odd - odd rows are shaded

• all - all rows are shaded

• hover - the row under the mouse cursor is shaded (HTML only)

In the following example, the stripes are enabled for even rows in the table body (the row that
contains A2, B2, and C2).

[cols=3*, stripes=even]
|===
| A1
| B1
| C1

| A2
| B2
| C2

| A3
| B3
| C3
|===

Under the covers, the stripes attribute applies the CSS class stripes-<value> (e.g., stripes-none) to
the table tag. As a shorthand, you can simply apply the CSS class to the table directly using a role.

[.stripes-even,cols=3*]
|===
| A1
| B1
| C1

| A2
| B2
| C2

| A3
| B3
| C3
|===

If you want to apply stripes to all tables in the document, set the table-stripes attribute in the
document header. You can still override this setting per table.
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:table-stripes: even

[cols=3*]
|===
| A1
| B1
| C1

| A2
| B2
| C2

| A3
| B3
| C3
|===

In the HTML output, table striping is done using CSS and thus depends on the stylesheet to supply
the necessary styles. The default stylesheet for Asciidoctor includes these styles.

23.9. Orientation
A table can be displayed in landscape (rotated 90 degrees counterclockwise) using the rotate option
(preferred):

[%rotate]
|===
|a |b
|c |d
|===

or the orientation attribute:

[orientation=landscape]
|===
|a |b
|c |d
|===

Currently, this is only implemented by the DocBook backend (it sets the attribute orient="land").

23.10. Nested Tables
Table cells marked with the AsciiDoc table style (a) support nested tables in addition to normal
block content. To distinguish the inner table from the enclosing one, you need to use !=== as the
table delimiter and a cell separator that differs from that used for the enclosing table. The default
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cell separator for a nested table is !, though you can choose another character by defining the
separator attribute on the table.


Although nested tables are not technically valid in DocBook 5.0, the DocBook
toolchain processes them anyway.

The following example contains a nested table in the last cell. Notice the nested table has its own
format, independent of that of the outer table:

[cols="1,2a"]
|===
| Col 1 | Col 2

| Cell 1.1
| Cell 1.2

| Cell 2.1
| Cell 2.2

[cols="2,1"]
!===
! Col1 ! Col2

! C11
! C12

!===

|===

Result: A nested table

Col 1 Col 2

Cell 1.1 Cell 1.2

Cell 2.1 Cell 2.2

Col1 Col2

C11 C12

We recommend using nested tables sparingly. There’s usually a better way to present the
information.

23.11. Table Caption
If you specify a title on a table, the title will be used as part of the table’s caption. Adding a title also
designates the table as a formal table.
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By default, the title of a formal table is prefixed with the label Table <n>. followed by a space,
where <n> is the 1-based index of all formal tables in the document.

.A formal table
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Table 1. A table with a title

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

You can customize the caption label by specifying the caption attribute. (Don’t let the name of the
attribute mislead you. The caption attribute only sets the caption’s label, not the whole caption
line).


If you want a space between the label and the title, you must add a trailing space
to the value of the caption attribute.

[caption="Table A. "]
.A formal table
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Table A. A formal table

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

If you want the caption of the table to only consist of the caption label, use the following syntax:
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[caption=,title='{table-caption} {counter:table-number}']
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

Alternately, you can write is as follows:

.{blank}
[caption='{table-caption} {counter:table-number}']
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

If you want to exclude the caption label altogether, simply assign a blank value to the caption
attribute.

[caption=]
.A formal table
|===
|Name of Column 1 |Name of Column 2

|Cell in column 1, row 1
|Cell in column 2, row 1

|Cell in column 1, row 2
|Cell in column 2, row 2
|===

A formal table

Name of Column 1 Name of Column 2

Cell in column 1, row 1 Cell in column 2, row 1

Cell in column 1, row 2 Cell in column 2, row 2

Alternatively, you can disable the caption label for tables globally by undefining the table-caption
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document attribute.

:table-caption!:

23.12. Escaping the Cell Separator
The parser scans for the cell separator to partition cells before it processes the cell text. So even if
you try to hide the cell separator using an inline passthrough, the parser will see it. If the cell
contain contains the cell separator, you must escape that character. There are three ways to escape
it:

• Prefix the character with a leading backslash (i.e., \|), which will be removed from the output.

• Use the {vbar} attribute reference as a substitute.

• Change the cell separator used by the table.

Unless you do one of these things, the cell separator will be interpreted as a cell boundary.

Consider the following example, which escapes the cell separator using a leading backslash:

[cols=2*]
|====
|The default separator in PSV tables is the \| character.
|The \| character is often referred to as a "`pipe`".
|====

This table will render as follows:

Result: Converted PSV table that contains pipe characters

The default separator in PSV tables is the |
character.

The | character is often referred to as a “pipe”.

Notice that the pipe character appears without the leading backslash (i.e., unescaped) in the
rendered result.

An alternative is to use the {vbar} attribute reference as a substitute. This approach produces the
same result as the previous example.

[cols=2*]
|====
|The default separator in PSV tables is the {vbar} character.
|The {vbar} character is often referred to as a "`pipe`".
|====

Escaping each cell separator character that appears in the content of a cell can be tedious. There
are also times when you can’t or don’t want to modify the cell content (perhaps because it is being
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included from another file). To address these cases, AsciiDoc allows you to override the cell
separator.

The cell separator is controlled using the separator attribute on the table block. You’ll want to select
a character that will never be used for content. A good candidate is the broken bar, or ¦.

Here’s the previous example rewritten using a custom separator.

[cols=2*,separator=¦]
|====
¦The default separator in PSV tables is the | character.
¦The | character is often referred to as a "`pipe`".
|====

Notice that it’s no longer necessary to escape the pipe character in the content of the table cells. You
can safely use the original cell separator in the cell content and not worry about it being
interpreted as the boundary of a cell.

23.13. Delimiter-Separated Values
Tables can also be populated from data formatted as delimiter-separated values (i.e., data tables). In
contrast with the PSV format, in which the delimiter is placed in front of each cell value, the
delimiter in a delimiter-separated format (CSV, TSV, DSV) is placed between the cell values (called a
separator) and does not accept a cell formatting spec. Each line of data is assumed to represent a
single row, though you’ll learn that’s not a strict rule. How the table data gets interpreted is
controlled by the format and separator attributes on the table.

What the delimiter?

Aren’t comma-separated values a subset of delimiter-separated values? It really depends on
who you consult.

The term “delimiter-separated values” in this text refers to the family of data formats that use
a delimiter, including comma-separated values (CSV), tab-separated values (TSV) and
delimited data (DSV), all of which are supported in AsciiDoc tables. CSV is the data format
used most often.

“Comma-separated values” is really a misleading term since CSV can use delimiters other
than , as the field separator (which, in this context, separates cells). What we’re really talking
about is how the data is interpreted.

CSV and TSV both use a delimiter and an optional enclosing character, loosely based on RFC
4180. DSV (i.e., delimited data) only uses a delimiter, which can be escaped using a backslash;
an enclosing character is not recognized. These parsing rules are described in detail in Data
Table Formats.

Let’s consider an example of using comma-separated values (CSV) to populate an AsciiDoc table
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with data. To instruct the processor to read the data as CSV, set the value of the format attribute on
the table to csv. When the format attribute is set to csv, the default data separator is a comma (,), as
seen in the table below.

[%header,format=csv]
|===
Artist,Track,Genre
Baauer,Harlem Shake,Hip Hop
The Lumineers,Ho Hey,Folk Rock
|===

Result: Rendered CSV table

Artist Track Genre

Baauer Harlem Shake Hip Hop

The Lumineers Ho Hey Folk Rock

This feature is particularly useful when you want to populate a table in your manuscript from data
stored in a separate file. You can do so using the include directive between the table delimiters, as
shown here:

[%header,format=csv]
|===
include::tracks.csv[]
|===

If your data is separated by tabs instead of commas, set the format to tsv (tab-separated values)
instead.

Now let’s consider an example of using delimited data (DSV) to populate an AsciiDoc table with
data. To instruct the processor to read the data as DSV, set the value of the format attribute on the
table to dsv. When the format attribute is set to dsv, the default data separator is a colon (:), as seen
in the table below.

[%header,format=dsv]
|===
Artist:Track:Genre
Robyn:Indestructable:Dance
The Piano Guys:Code Name Vivaldi:Classical
|===

Result: Rendered DSV table

Artist Track Genre

Robyn Indestructable Dance

The Piano Guys Code Name Vivaldi Classical

143



23.13.1. Data Table Formats

The CSV and TSV data formats are parsed differently from the DSV data format. The following two
sections outline those differences.

CSV and TSV

Table data in either CSV or TSV format is parsed according to the following rules, loosely based on
RFC 4180:

• The default delimiter for CSV is a comma (,) while the default delimiter for TSV is a tab
character.

• Blank lines are skipped (unless enclosed in a quoted value).

• Whitespace surrounding each value is stripped.

• Values can be enclosed in double quotes (").

◦ A quoted value may contain zero or more separator or newline characters.

◦ A newline begins a new row unless the newline is enclosed in double quotes.

◦ A quoted value may include the double quote character if escaped using another double
quote ("").

◦ Newlines in quoted values are retained (as of 1.5.7).

• If rows do not have the same number of cells (“ragged” tables), cells are shuffled to fully fill the
rows.

◦ This is different behavior than Excel, which pads short rows with empty cells.

◦ Extra cells at the end of the last row get dropped.

◦ As a rule of thumb, data for a single row should be on the same line.

DSV

Table data in DSV format is parsed according to the following rules:

• The default delimiter for DSV is a colon (:).

• Blank lines are skipped.

• Whitespace surrounding each value is stripped.

• The delimiter character can be included in the value if escaped using a single backslash (\:).

• If rows do not have the same number of cells (“ragged” tables), cells are shuffled to fully fill the
rows.

23.13.2. Custom Delimiters

Each data format has a default separator associated with it (csv = comma, tsv = tab, dsv = colon), but
the separator can be changed to any character (or even a string of characters) by setting the
separator attribute on the table.

Here’s an example of a DSV table that uses a custom separator character (i.e., delimiter):
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A DSV table with a custom separator

[format=dsv,separator=;]
|===
a;b;c
d;e;f
|===


To make a TSV table, you can set the format attribute to csv and the separator to \t.
Though the tsv format is preferred.

The separator is independent of the processing rules for the format. If you set format=dsv and
separator=,, the data will be processed using the DSV rules, even though the data looks like CSV.

23.13.3. Shorthand Notation for Data Tables

Asciidoctor provides shorthand notation for specifying the data format of a table. The first position
of the table block delimiter (i.e., |===) can be replaced by a built-in delimiter to set the table format
(e.g., ,=== for CSV).

To make a CSV table, you can use ,=== as the table block delimiter:

,===
Artist,Track,Genre

Baauer,Harlem Shake,Hip Hop
,===

Result: Rendered CSV table using shorthand syntax

Artist Track Genre

Baauer Harlem Shake Hip Hop

To make a DSV table, you can use :=== as the table block delimiter:

:===
Artist:Track:Genre

Robyn:Indestructable:Dance
:===

Result: Rendered DSV table using shorthand syntax

Artist Track Genre

Robyn Indestructable Dance

When using either the CSV or DSV shorthand, you do not need to set the format attribute as it’s
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implied.

To make a TSV table, you can set the format attribute to tsv instead of having to set the format to csv
and the separator to \t. In this case, you can use either |=== or ,=== as the table block delimiter.
There is no special delimited block notation for a TSV table.

23.13.4. Formatting Cells in a Data Table

The delimited formats do not provide a way to express formatting of individual table cells. Instead,
you can apply cell formatting to all cells in a given column using the cols spec on the table:

[format=csv,cols="1h,1a"]
|===
Sky,image::sky.jpg[]
Forest,image::forest.jpg[]
|===

Data tables do not support cells that span multiple rows or columns, since that information can
only be expressed at the cell level. You are advised to use the PSV format if you need that
functionality.

23.14. Summary
Table attributes and values

Attribute Description Value Description Notes

cols comma-separated list of
column specifiers

specifiers see Columns for details

format data format of the
table’s contents

psv cells are delimited by
separator (default |)
(aka prefix-separated
values)

dsv cells are delimited by a
colon (:) (aka delimiter-
separated values)

csv cells are delimited by a
comma (,) (aka comma-
separated values)

tsv cells are delimited by a
tab character (aka tab-
separated values)
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Attribute Description Value Description Notes

separator character used to
separate cells

| default for top-level
tables

! default for nested
tables

user-
defined

any sequence of literal
characters (e.g., ¦ or ][).
Ideally a pattern not
found in the cell content.

frame draws a border around
the table

all border on all sides
(default)

topbot border on top and
bottom

none no borders

sides border on left and right
sides

grid draws boundary lines
between rows and
columns

all draws boundary lines
around each cell
(default)

cols draws boundary lines
between columns

rows draws boundary lines
between rows

none no boundary lines

stripes controls row shading
(via background color)

none no rows are shaded

even even rows are shaded
(default in Asciidoctor <
2.0)

odd odd rows are shaded

hover row under the mouse
cursor is shaded (HTML
only)

all all rows are shaded

align horizontally aligns
table within page width

left aligns to left side of
page (default)

Not yet implemented in
Asciidoctor. Applies to
HTML output only. The
align and float
attributes are mutually
exclusive.

right aligns to right side of
page

center horizontally aligns to
center of page
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Attribute Description Value Description Notes

float floats the table to the
specified side of the
page

left floats the table to the
left side of the page
(default)

Applies to HTML output
only. Must be used in
conjunction with the
table’s width attribute
to take effect. The float
and align attributes are
mutually exclusive.

right floats the table to the
right side of the page

halign horizontally aligns all
of the cell contents in a
table

left aligns the contents of
the cells to the left
(default)

Not implemented in
Asciidoctor. Define
instead using column
or cell specifiers (e.g.,
3*>), which take
precedence over this
value.

right aligns the contents of
the cells to the right

center aligns the contents to
the cell centers

valign vertically aligns all of
the cell contents in a
table

top aligns the cell contents
to the top of the cell
(default)

Define instead using
column or cell
specifiers (e.g., 3*.>),
which take precedence
over this value.

bottom aligns the cell contents
to the bottom of the cell

middle aligns the cell contents
to the middle of the cell

orientatio
n

rotates the table landscape rotated 90 degrees
counterclockwise

Equivalent to setting
the rotate option,
which is preferred.
DocBook only.

options comma separated list of
option names

header promotes first row to
the table header

header and footer rows
are omitted by default

footer promotes last row to
the table footer

breakable allows the table to split
across a page (default)

Mutually exclusive.
DocBook only
(specifically for
generating PDF output).

unbreakabl
e

prevents the table from
being split across a
page

autowidth disables explicit
column widths (ignores
cols attribute)

rotate Prints the table in
landscape

Equivalent to setting
the orientation to
landscape. DocBook
only.
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Attribute Description Value Description Notes

width the table width relative
to the available page
width

user
defined
value

a percentage value
between 0% and 100%
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Chapter 24. Horizontal Rules
Horizontal rule syntax

'''

Result: Horizontal rule

24.1. Markdown-style horizontal rules
Asciidoctor recognizes Markdown horizontal rules. The motivation here is to ease migration of
Markdown documents to AsciiDoc documents.

To avoid conflicts with AsciiDoc’s block delimiter syntax, only 3 repeating characters (- or *) are
recognized. As with Markdown, whitespace between the characters is optional.

Markdown-style horizontal rule syntax

---

- - -

***

* * *

Result: Markdown-style horizontal rules

A macro definition for the Markdown horizontal rules is included in the AsciiDoc compatibility file
so they can be recognized by the asciidoc command as well.
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Chapter 25. Page Break
Page break syntax

<<<
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Chapter 26. URLs
A Uniform Resource Link (URL) represents the location of a resource on the web. Typical URLs
contain a scheme, domain name, file name, and extension.

Asciidoctor recognizes the following common schemes without the help of any markup.

• http

• https

• ftp

• irc

• mailto

• email@email.com

You can think of these like implicit macro names. Since the URL in the example below begins with a
protocol (in this case https followed by a colon), Asciidoctor will automatically turn it into a
hyperlink when it is processed.

The homepage for the Asciidoctor Project is https://asciidoctor.org. ①

① The trailing period will not get caught up in the link.

To prevent automatic linking of an URL, prepend it with a backslash (\).

If you prefer URLs to be shown without a visible scheme, set the hide-uri-scheme attribute in the
document’s header.

:hide-uri-scheme:

https://asciidoctor.org

When the hide-uri-scheme attribute is set, the above URL will render as follows:

<a href="https://asciidoctor.org">asciidoctor.org</a>

Note the absence of https inside the <a> element.

To attach a URL to text, enclose the text in square brackets at the end of the URL.
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Chat with other Fedora users in the irc://irc.freenode.org/#fedora[Fedora IRC
channel].

Additionally, you can format the linked text.

Ask questions on the https://discuss.asciidoctor.org/[*mailing list*].

Rendered URLs

The homepage for the Asciidoctor Project is https://asciidoctor.org.

Chat with other Fedora users in the Fedora IRC channel.

Ask questions on the mailing list.

When a URL does not start with one of the common schemes, or the URL is not surrounded by word
boundaries, you must use the link macro. The link macro is a stronger version of a URI macro,
which you can think of like an unconstrained macro. The URL is preceded by link: and followed by
square brackets. The square brackets may include optional link text. The URL is used for the text of
the link if link text is not specified. Prior to 1.5.7, if the linkattrs document attribute is set, the text
in square brackets is parsed as attributes, which allows a window name or role to be specified.
Since 1.5.7, attributes are parsed automatically if an equal sign is found after a comma (e.g., [link
text,window=_blank]).

Anatomy of a link macro

link:url[optional link text, optional target attribute, optional role attribute]

Let’s consider a case where we need to use the link macro (instead of just a URI macro) to expand a
link when it’s not adjacent to a word boundary (i.e., unconstrained).

search/link:https://ecosia.org[Ecosia]

search/Ecosia

If we didn’t use the link: prefix in this case, the URL macro would not be detected by the parser.
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Troubleshooting Complex URLs

A URL may not display correctly when it contains characters such as underscores (_) or carets
(^). This problem occurs because the markup parser interprets parts of the URL (i.e., the link
target) as valid text formatting markup. Most lightweight markup languages have this issue
because they don’t use a grammar-based parser. Asciidoctor plans to handle URLs more
carefully in the future (see issue #281), which may be solved by moving to a grammar-based
parser (see issue #61). Thankfully, there are many ways to include URLs of arbitrary
complexity using the AsciiDoc passthrough mechanisms.

Solution A

The simplest way to get a link to behave is to assign it to an attribute.

= Document Title
:link-with-underscores: https://asciidoctor.org/now_this__link_works.html

This URL has repeating underscores {link-with-underscores}.

Asciidoctor won’t break links with underscores when they are assigned to an attribute
because inline formatting markup is substituted before attributes. The URL remains
hidden while the rest of the document is being formatted (strong, emphasis, monospace,
etc).

Solution B

Another way to solve formatting glitches is to explicitly specify the formatting you want
to have applied to a span of text. This can be done by using the inline pass macro. If you
want to display a URL, and have it preserved, put it inside the pass macro and enable the
macros substitution, which is what substitutes links.

This URL has repeating underscores
pass:macros[https://asciidoctor.org/now_this__link_works.html].

The pass macro removes the URL from the document, applies the macros substitution to
the URL, and then restores the processed URL to its original location once the
substitutions are complete on the whole document.

Alternatively, you can use ++ around the URL only. However, when you use this
approach, Asciidoctor won’t recognize it as a URL any more, so you have to use the
explicit link prefix.

This URL has repeating underscores
link:++https://asciidoctor.org/now_this__link_works.html++[].
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For more information, see issue #625.

Next, we’ll add a target and role to a link macro.

Prior to 1.5.7, Asciidoctor does not parse attributes in the link macro by default. If you want
attributes in the link macro to be parsed, you must set the linkattrs document attribute in the
header. Since 1.5.7, this parsing is automatic (and the attribute is not required) if an equal sign is
found after a comma. When attribute parsing is enabled, you can then specify the name of the
target window using the window attribute.

= Asciidoctor Document Title

Let's view the raw HTML of the link:view-source:asciidoctor.org[Asciidoctor
homepage,window=_blank].

Let’s view the raw HTML of the Asciidoctor homepage.

Since _blank is the most common window name, we’ve introduced shorthand for it. Just end the
link text with a caret (^):

Let's view the raw HTML of the link:view-source:asciidoctor.org[Asciidoctor
homepage^].


If you use the caret syntax more than once in a single paragraph, you may need to
escape the first occurrence with a backslash.

When attribute parsing is enabled, you can add a role (i.e., CSS class) to the link.

Chat with other Asciidoctor users on the https://discuss.asciidoctor.org/[*mailing
list*^,role=green].

Chat with other Asciidoctor users on the mailing list.


Links with attributes (including the subject and body segments on mailto links) are
a feature unique to Asciidoctor. When they’re enabled, you must surround the link
text in double quotes if it contains a comma.

26.1. Link to Relative Files
If you want to link to an external file relative to the current document, use the link macro in front
of the file name.
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link:protocol.json[Open the JSON file]

If your file is an HTML file, you can link directly to a section in the document, append a hash (#)
followed by the section’s ID to the end of the file name.

link:external.html#livereload[LiveReload]

26.2. Summary
Link attributes and values

Attribute Value(s) Example Syntax Comments

linkattrs :linkattrs: Must be set in the header to
parse link macro attributes
prior to 1.5.7. Since 1.5.7,
attributes are parsed
automatically if an equal sign is
found after a comma (e.g., [link
text,window=_blank]).

window blank https://discuss.asciidoctor.org[D
iscuss
Asciidoctor,window=_blank]

The blank window target can
also be specified using ^ at the
end of the link text.

window ^ http://example.org["Google,
Yahoo, Bing^"] and
https://discuss.asciidoctor.org[D
iscuss Asciidoctor^]

role CSS classes
available to
inline elements

https://discuss.asciidoctor.org[D
iscuss Asciidoctor,role=teal]

id name of
element,
custom link
text

<<section-title,cross reference
text>>

Applies to cross references
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Chapter 27. Cross References
A link to another location within the current AsciiDoc document or in another AsciiDoc document
is called a cross reference (also referred to as an xref). To create a cross reference, you first need to
define the location where the reference will point (i.e., the anchor). Then, you need to use one of the
forms of the inline xref macro to create a reference to that location. From there, you can customize
the text of the reference in various ways.

27.1. Automatic Anchors
It’s important to understand that many anchors are already defined for you. Using default settings,
Asciidoctor automatically creates an anchor for every section and discrete heading. It does so by
generating an ID for that section (or discrete heading) and registering that ID in the references
catalog. You can then use that ID as the target of an cross reference.

For example, considering the following section.

= Section Title

Asciidoctor automatically assigns the ID _section_title to this section, which you can then use as
the target of an xref to create a reference to this section. You can also customize how this ID is
generated. Refer to Auto-generated IDs for more information about how Asciidoctor generates these
IDs.

If you’re referring to a content element other than a section, you’ll need to define an anchor on that
element explicitly. Read on to learn how.

27.2. Defining an Anchor
An anchor (aka ID) can be defined almost anywhere in the document, including on section title, on
a discrete heading, on a paragraph, on an image, on a delimited block, on an inline phrase, and so
forth. The anchor is declared by enclosing a valid XML Name in double square brackets (e.g.,
[[idname]]) or using the shorthand ID syntax (e.g., [#idname]) at the start of an attribute list.

The double square bracket form requires the ID to start with a letter, an underscore, or a colon,
ensuring the ID is portable. According to the XML Name rules, a portable ID may not begin with a
number, even though a number is allowed elsewhere in the name. The shorthand form in an
attribute list does not impose this restriction.

If you want to reference a block element, all you need to do is assign an ID to that block. You can
enclose the ID in double square brackets:

Assigning an ID to a paragraph

[[notice]]
This paragraph gets a lot of attention.
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or use the shorthand ID syntax:

Assigning an ID to a paragraph using shorthand syntax

[#notice]
This paragraph gets a lot of attention.

You can also define an anchor anywhere in content that receives normal substitutions (specifically
the macro substitution). You can enclose the ID in double square brackets:

Defining an inline anchor

[[bookmark-a]]Inline anchors make arbitrary content referenceable.

or using the shorthand ID syntax.

Defining an inline anchor using shorthand syntax

[#bookmark-b]#Inline anchors can be applied to a phrase like this one.#

In addition to being able to define anchors on sections and blocks, anchors can be defined inline
where ever you can type normal text (anchors are a macro substitution). The anchors in the text get
replaced with invisible anchor points in the output.

For example, you would not put an anchor in front of a list item:

Wrong position for an anchor ID in front of a list item.

[[anchor-point]]* list item text

Instead, you would put it at the very start of the text of the list item:

Defining an inline anchor on a list item

* Fist item
* [[step2]]Second item
* Third item

Here’s how you can define the ID for a section using an inline anchor:

Defining the ID of a section using an inline anchor

=== Version 4.9 [[version-4_9]]

To add additional anchors to a section, place them in front of the title.
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Adding additional anchors to a section

=== [[current]]Version 4.9 [[version-4_9]]


If you add additional anchors to a section title, make sure you also assign an
explicit ID to that section. Otherwise, the anchor tag gets caught up in the
generated ID. See #840 for details.

Remember that inline anchors are discovered where ever the macro substitution is applied (e.g.,
paragraph text). If text content doesn’t belong somewhere, neither does an inline anchor point.

It’s possible to customize the text that will be used in the cross reference link (called xreflabel). If
not defined, Asciidoctor does it best to find suitable text (the solution differs from case to case). In
case of an image, the image caption will be used. In case of a section header, the text of the section’s
title will be used.

To define the xreflabel, add it in the anchor definition right after the ID (separated by a comma).

An anchor ID with a defined xreflabel. The caption will not be used as link text.

[[tiger-image,Image of a tiger]]
.This image represents a Bengal tiger also called the Indian tiger
image::tiger.png[]

Instead of the bracket form, you can use the macro anchor to achieve the same goal.

Setting an anchor ID using the macro form

anchor:tiger-image[Image of a tiger]

27.3. Internal Cross References
In Asciidoctor, the inline xref macro is used to create cross references (also called in-text or page
citations) to content elements (sections, blocks, or phrases) that have an ID (regardless of whether
that ID is explicit or auto-generated).

You create a cross reference by enclosing the ID of the target block or section (or the path of
another document with an optional anchor) in double angled brackets.

Cross reference using the ID of the target section

The section <<images>> describes how to insert images into your document.

Rendered cross reference using the ID of the target section

The section Images describes how to insert images into your document.
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You can also link to a block or section using the title by referencing its title, referred to as a natural
cross reference. The title must contain at least one space character or contain at least one uppercase
letter. (If you are using Ruby < 2.4, that uppercase letter is restricted to the basic Latin charset).

Cross reference using a section’s title

Refer to <<Internal Cross References>>.

Rendered cross reference using a section’s title

Refer to Internal Cross References.

Converters usually use the reftext of the target as the default text of the link. When the document is
parsed, attribute references in the reftext are substituted immediately. When the reftext is
displayed, additional reftext substitutions are applied to the text (specialchars, quotes, and
replacements).

You can override the reftext of the target by specifying alternative text at the location of the cross
reference. After the ID, add a comma and then enter the custom text you want the cross reference
to display.

Cross reference with custom xreflabel text

Learn how to <<link-macro-attributes,use attributes within the link macro>>.

Rendered cross reference using custom xreflabel text

Learn how to use attributes within the link macro.

You can also use the inline xref macro as an alternative to the double angled bracket form.

Inline xref macro

Learn how to xref:link-macro-attributes[use attributes within the link macro].

27.4. Validating Internal Cross References
Asciidoctor provides limited support for validating internal cross references. Validation occurs
when a cross reference is first visited. Since there are still some references aren’t stored in the
parse tree (such as an anchor in the middle of a paragraph), which can lead to false positives, these
validations are hidden behind a flag.

You can enable validation of cross references from the CLI by passing the -v and from the API by
setting the $VERBOSE variable to true. This puts the processor in pedantic mode. In this mode, the
parser will immediately validate cross references, issuing a warning message if the reference is not
valid.
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Consider the following example:

See <<foobar>>.

[#foobaz]
== Foobaz

If you run Asciidoctor in verbose/pedantic mode on this document, it will send the following
warning message to the logger.

asciidoctor: WARNING: invalid reference: foobar

Asciidoctor only validates references within the same document (after includes are resolved).

27.5. Customizing the Cross Reference Text
Starting in Asciidoctor 1.5.6, when you use one of the native converters (HTML, PDF, and EPUB3),
you can customize the style of the automatic cross reference text using the xrefstyle document
attribute. This customization brings the cross reference text formatting from the DocBook toolchain
to the native Asciidoctor converters.

By default, the cross reference text matches the title of the referenced element. For example, if
you’re linking to a section titled “Installation”, the text of the cross reference link appears as:

Installation

If the reftext attribute is specified on the referenced element, that value is preferred over its title.
For example, let’s assume the section from the previous example was written as:

[reftext="Installation Procedure"]
=== Installation

In this case, the text of the cross reference link appears as:

Installation Procedure

Attribute references are substituted in the reftext during parsing and reftext substitutions
(specialchars, quotes, and replacements) are applied to the value when it’s used during conversion.

If the reftext is not specified, the text of the cross reference is automatically generated. By default,
this text is the title of the reference. There are three built-in styles you can choose from to
customize the generated text of a cross reference, as controlled by the xrefstyle document attribute.
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:xrefstyle: full

Uses the signifier for the reference (e.g., Section) followed by the reference number and
emphasized (chapter or appendix) or quoted title (e.g., Section 2.3, “Installation” or Figure 1, “Big
Cats”).

:xrefstyle: short

Uses the signifier for the reference (e.g., Section) followed by the reference number (e.g., Section
2.3 or Figure 1).

:xrefstyle: basic

Uses the title only (Installation or Big Cats), applying emphasis if the reference is a chapter or
appendix.

This formatting only applies to references that have both a title and number (or explicit caption),
but no explicit reftext. If the reference is a chapter or an appendix, the title is displayed in italics
instead of quotes (even when the xrefstyle is basic).

Let’s assume you want to reference a section titled “Installation” that has the number 2.3. The full
style is displayed as:

Section 2.3, “Installation”

The short style is displayed as:

Section 2.3

The basic style is displayed as:

Installation

The full and short styles only apply for references that have a caption. Specifically, the
corresponding -caption attribute must be set for the target’s block type (e.g., listing-
caption for listing blocks, example-caption for example blocks, table-caption for tables,
etc.). Otherwise, the *basic style is used.

You can use document attributes to customize the signifier that is placed in front of the reference’s
number. This reference signifier indicates the reference’s type (e.g., Chapter or Section).

• chapter-refsig — defines the signifier to use for a cross reference to a chapter (default: Chapter)

• section-refsig — defines the signifier to use for a cross reference to a section (default: Section)

• appendix-refsig — defines the signifier to use for a cross reference to an appendix (default:
Appendix)

(The signifier attribute for a part cross reference will be introduced once numeration is supported
for parts).

162



For example, to customize the word “Section”, define the section-refsig attribute in the document
header:

:section-refsig: Sect.

The full xrefstyle would then be displayed as:

Sect. 2.3, “Installation”

The short xrefstyle would be displayed as:

Sect. 2.3

If you unset the attribute, the signifier is dropped from the cross reference text. For example:

:!section-refsig:

In this case, the full xrefstyle will display only the number and title:

2.3, “Installation”

The short xrefstyle will fall back to the number only:

2.3

The basic xrefstyle is unaffected by the value of the signifier.

Only the aforementioned styles are provided out of the box. Support for a custom formatting string
is planned. Refer to #2212 for details. Until then, you can implement custom formatting in a custom
converter or overridding the xreftext method on the node.

27.6. Inter-document Cross References
The inline xref macro can also link to IDs in other AsciiDoc documents. This eliminates the need to
use direct links between documents that are coupled to a particular converter (e.g., HTML links). It
also captures the intent of the author to establish a reference to a section in another document.

Here’s how a cross reference is normally defined in Asciidoctor:

The section <<images>> describes how to insert images into your document.
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This cross reference creates a link to the section with the ID images.

Let’s assume the cross reference is defined in the document document-a.adoc. If the target section is
in a separate document, document-b.adoc, the author may be tempted to write:

Refer to link:document-b.html#section-b[Section B] for more information.

However, this link is coupled to HTML output. What’s worse, if document-b.adoc is included in the
same document as document-a.adoc, the link will refer to a document that doesn’t even exist!

These problems can be alleviated by using an inter-document xref:

Refer to <<document-b.adoc#section-b,Section B>> for more information.

The ID of the target is now placed behind a hash symbol (#). Preceding the hash is the name of the
reference document (the file extension is optional). We’ve also added a label since Asciidoctor
cannot (yet) resolve the section title in a separate document.

When Asciidoctor generates the link for this cross reference, it first checks to see if document-b.adoc
is included in the same document as document-a.doc. If not, it will generate a link to document-
b.html, intelligently substituting the original file extension with the file extension of the output file.

<a href="document-b.html#section-b">Section B</a>

If document-b.adoc is included in the same document as document-a.doc, then the document will be
dropped in the link target and look like the output of a normal cross reference:

<a href="#section-b">Section B</a>

Now you can create inter-document cross references without the headache.

27.6.1. Navigating Between Source Files

In certain environments, such as a source repository or the browser preview extensions, you view
the generated HTML through the AsciiDoc source URL. This has consequences for inter-document
cross references.

Since the default suffix for relative links in the html5 backend is .html, the inter-document cross
references in these environments end up pointing to non-existent HTML files. In this case, you need
to change the inter-document cross references to refer to other AsciiDoc source files instead. You
can achieve this behavior by setting the outfilesuffix attribute to the value as .adoc, as the
example below shows.
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= Document Title
ifdef::env-github,env-browser[:outfilesuffix: .adoc]

See the <<README#,README>>.

We could also write the link as link:README{outfilesuffix}[README].

The links in the generated document will now point to README.adoc instead of the default,
README.html.


This configuration is no longer necessary on GitHub and GitLab since they set the
value of outfilesuffix to match the file extension of the source file. However, it
may still be required in other GitHub-like environments.


You probably don’t want to set outfilesuffix to .adoc without the ifdef condition
as it could result in Asciidoctor overwriting input files when you run it locally
(though there’s some protection against this).

While outfilesuffix gives you control over the end of the resolved path for an inter-document
cross reference, the relfileprefix attribute gives you control over the beginning of the path. When
resolving the path of an inter-document cross reference, if the relfileprefix attribute is set, the
value of this attribute gets prepended to the path. Let’s look at an example of when these two
attributes are used together.

A common practice in website architecture is to move files into their own folder to make the path
format agnostic (called “indexify”). For example, the path filename.html becomes filename/ (which
targets filename/index.html). However, this is problematic for inter-document cross references. Any
cross reference that resolves to the path filename.html is now invalid since the file has moved to a
subfolder (and thus no longer a sibling of the referencing document).

To solve this problem, you can define the following two attributes:

:relfileprefix: ../
:outfilesuffix: /

Now, the cross reference <<filename#,Label>> will resolve to ../filename/ instead of filename.html.
Since this change is specific to the website architecture described, you want to be sure to only set
these attributes in that particular environment (either using an ifdef directive or via the API).
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Chapter 28. Include Directive
The include directive provides a way to import content from another file into the current
document. The include directive must be placed on a line by itself with the following syntax, which
is covered in detail in the next section.

include::path[<attrlist>]

When the document is processed, the include directive is replaced by the contents of the include
file. Think of the include directive like a file expander.

This directive is useful if you want to:

• partition a large document into smaller files (for better organization and to make restructuring
simpler),

◦ (always separate consecutive include directives by a blank line unless your intent is for the
included lines to run together)

• insert snippets of source code (so your examples are kept up-to-date with the latest source files),

• populate tables with output from other programs (e.g., CSV data),

• create document variants by combining the include directive with preprocessor conditionals
(e.g., ifdef), and

• reuse fragments and boilerplate content multiple times within the same document.

You can use the include directive as many times as you want in the same document.


The include directive is disabled when Asciidoctor is run in secure mode. In this
mode, the include directive is converted to a link in the output document. To learn
more about secure mode, refer to the section Running Asciidoctor Securely.

28.1. Anatomy
The include directive has the following anatomy:

include::path[leveloffset=<em>offset</em>,lines=<em>ranges</em>,tag(s)=<em>name(s)</em
>,indent=<em>depth</em>,opts=optional]

The leveloffset, lines, tag(s), indent, and opt attributes are optional, making the simplest case look
like:

include::content.adoc[]

The sections that follow go into detail about when the include is processed, how the include file is
resolved, and how each attribute is used.
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28.2. Processing
Although the include directive looks like a block macro, it’s not a macro and therefore not
processed like one. Instead, it’s a preprocessor directive, just like ifdef and ifeval. It’s important to
understand the distinction.

A preprocessor directive is processed when the lines are read, but before the document structure is
parsed. Therefore, it’s not aware of the surrounding document structure. A preprocessor directive
merely adds lines to the reader or takes lines away. The include directive is a preprocessor directive
that always adds lines.

The best way to think of the include directive is to imagine that it is being replaced by the lines
from the include file (i.e., the imported lines). Only then does the parser read and interpret those
lines. That’s also why it’s important to surround the include directive by blank lines if it imports in
a discrete structure. You only want to place include files directly adjacent to one another if the
imported content should be directly adjacent.

If you don’t want the include directive to be processed, you must escape it using a backslash.

\include::just-an-example.ext[]

Escaping the directive is necessary even if it appears in a verbatim block since it’s not aware of the
surrounding document structure.

28.3. File resolution
The path used in an include directive may be either relative or absolute.

If the path relative, the processor resolves the path using the following rules:

• If the include directive is used in the main (top-level) document, relative paths are resolved
relative to the base directory. (The base directory defaults to the directory of the main
document and can be overridden from the CLI or API).

• If the include directive is used in a file that has itself been included, the path is resolved relative
to the including (i.e., current) file.

These defaults makes it easy to reason about how the path to the include file is resolved.

If the processor cannot locate the file (perhaps because you mistyped the path), you’ll still be able to
convert the document. However, you will get the following warning message during conversion:

asciidoctor: WARNING: master.adoc: line 3: include file not found: /.../content.adoc

The following message will also be inserted into the output:
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Unresolved directive in master.adoc - include::content.adoc[]

To fix the problem, edit the file path and run the converter again.


If you want Asciidoctor not to trigger a warning when the target is missing, set the
optional option on the include directive (e.g., opts=optional).

If you store your AsciiDoc files in nested folders at different levels, relative file paths can quickly
become awkward and inflexible. A common pattern to help here is to define the paths in attributes
defined in the header, then prefix all include paths with a reference to one of these attributes:

:includedir: _includes
:sourcedir: ../src/main/java

include::{includedir}/fragment1.adoc[]

[source,java]
----
include::{sourcedir}/org/asciidoctor/Asciidoctor.java[]
----

Keep in mind that no matter how Asciidoctor resolves the path to the file, access to that file is
limited by the safe mode setting under which Asciidoctor is run. If a path violates the security
restrictions, it may be truncated.

28.4. Partitioning large documents and using
leveloffset
When your document gets large, you can split it up into subsections for easier editing as follows:

= My book

include::chapter01.adoc[]

include::chapter02.adoc[]

include::chapter03.adoc[]
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Take note of the blank lines between the include directives. The blank line
between include directives prevents the first and last lines of the included files
from being adjoined. This practice is strongly encouraged when combining
document parts. If you don’t include these blank lines, you might find that the
AsciiDoc processor swallows section titles. This happens because the leading
section title can get interpreted as the last line of the final paragraph in the
preceding include. Only place include directives on consecutive lines if the intent
is for the includes to run together (such as in a listing block).

The leveloffset attribute can help here by pushing all headings in the included document down by
the specified number of levels. This allows you to publish each chapter as a standalone document
(complete with a document title), but still be able to include the chapters into a master document
(which has its own document title).

You can easily assemble your book so that the chapter document titles become level 1 headings
using:

= My Book

include::chapter01.adoc[leveloffset=+1]

include::chapter02.adoc[leveloffset=+1]

include::chapter03.adoc[leveloffset=+1]

Because the leveloffset is relative (it begins with + or -), this works even if the included document
has its own includes and leveloffsets.

If you have lots of chapters to include and want them all to have the same offset, you can save some
typing by setting leveloffset around the includes:

= My book

:leveloffset: +1

include::chapter01.adoc[]

include::chapter02.adoc[]

include::chapter03.adoc[]

:leveloffset: -1

The final line returns the leveloffset to 0.

Alternatively, you could use absolute levels:
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:leveloffset: 1

//includes

:leveloffset: 0

Relative levels are preferred. Absolute levels become awkward when you have nested includes
since they aren’t context aware.

28.5. AsciiDoc vs non-AsciiDoc files
The include directive performs a simple file merge, so it works with any text file. The content of all
included content is normalized. This means that the encoding is forced to UTF-8 (or converted from
UTF-16 to UTF-8 if the file contains a BOM) and trailing whitespace and endlines are removed from
each line and replaced with a Unix line feed. This normalization is important to how Asciidoctor
works.

If the file is recognized as an AsciiDoc file (i.e., it has one of the following extensions: .asciidoc,
.adoc, .ad, .asc, or .txt), Asciidoctor runs the preprocessor on the lines, looking for and interpreting
the following directives:

• includes

• preprocessor conditionals (e.g., ifdef)

This allows includes to be nested, and provides lot of flexibility in constructing radically different
documents with a single master document and a few command line attributes.

Including non-AsciiDoc files is normally done to merge output from other programs or populate
table data:

.2016 Sales Results
,===
include::sales/2016/results.csv[]
,===

In this case, the include directive does not do any processing of AsciiDoc directives. The content is
inserted as is (after being normalized).

28.6. Select Portions of a Document to Include
The include directive enables you to select portions of a file to include instead of including the
whole file. Use the lines attribute to include individual lines or a range of lines (by line number).
Use the tags attribute (or tag attribute for the singular case) to select lines that fall between regions
marked with user-defined tags.

When including multiple line ranges or multiple tags, each entry in the list must be separated by
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either a comma or a semi-colon. If commas are used, the entire value must be enclosed in quotes.
You can eliminate this requirement by using the semi-colon as the data separator instead.

28.6.1. By tagged regions

Tags are useful when you want to identify specific regions of a file to include. You can then select
the lines between the boundaries of the include tag/end directives to include using the tags
attribute.


If the target file has tagged lines, and you just want to ignore those lines, use the
tags attribute to filter them out. See Tag filtering for details.

The example below shows how you tag a region of content inside a file containing multiple code
examples.

Tagged code snippets in a file named core.rb

# tag::timings[] ① ②
if timings
  timings.record :read
  timings.start :parse
end
# end::timings[] ③ ④
# tag::parse[] ⑤
doc = (options[:parse] == false ? (Document.new lines, options) :
    (Document.new lines,options).parse)
timings.record :parse if timings
doc
# end::parse[] ⑥

① To indicate the start of a tagged region, insert a comment line in the code.

② Assign a unique name to the tag directive. In this example the tag is called timings.

③ Insert another comment line where you want the tagged region to end.

④ Assign the name of the region you want to terminate to the end directive.

⑤ This is the start a tagged snippet named parse.

⑥ This is the end of the tagged snippet named parse.



The tag::[] and end::[] directives should be placed after a line comment as
defined by the language of the source file. The directives must also appear at the
end of the line. In the previous example, we choose to prefix the lines with a hash
(#) because that’s the start of a line comment in Ruby.



For languages that only have circumfix comments, such as XML, you can enclose
the tag and end directives in the respective circumfix comment markers. For
example, in XML files, you can use <!-- tag::name[] --> and <!-- end::name[] -->
(the spaces around the tag are required).
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In the next example, the tagged region named parse is selected by the include directive.

Selecting the parse code snippet from a document

[source,ruby]
----
include::core.rb[tag=parse] ①
----

① In the directive’s brackets, set the tag attribute and assign it the unique name of the code snippet
you tagged in your code file.

You can include multiple tags from the same file.

Selecting the timings and the parse code snippets from a document

[source,ruby]
----
include::core.rb[tags=timings;parse]
----

It is also possible to have fine-grained tagged regions inside larger tagged regions.

For example, if your include file has the following content:

// tag::snippets[]
// tag::snippet-a[]
snippet a
// end::snippet-a[]

// tag::snippet-b[]
snippet b
// end::snippet-b[]
// end::snippets[]

And you include this file using the following include directive:

include::file-with-snippets.adoc[tag=snippets]

The following lines will be selected and displayed:

snippet a

snippet b

Notice that none of the lines with the tag directives are displayed.
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28.6.2. Tag filtering

The previous section showed how to select tagged regions explicitly, but you can also use wildcards
and exclusions. These expressions give you the ability to include or exclude tags in bulk. Even if
you’re not including by tag, you can use the double wildcard (**) to ignore all lines with an include
tag/end directive.

The modifiers you can use for filtering are as follows:

*

Select all tagged regions.

**

Select all the lines in the document except for lines with an include tag/end directive. Use this
symbol if you want to include a file that has tag/end directives, but you want to ignore all those
lines.

!

Negate the match.

The wildcards are applied first, then the exclusions are applied. Technically, the order you list them
doesn’t matter, but it’s customary to list them in this order.

Here are some of the permutations that you can use:

• ** — selects all the lines in the document; matches the default behavior of the include directive,
except lines containing a tag directive; shorthand for **;* when used alone

• * — selects all tagged regions in the document.

• **;* — selects all the lines outside and inside of tagged regions, but not the lines containing a tag
directive.

• foo;!bar — selects regions tagged foo, but excludes any nested regions tagged bar.

• *;!foo — selects all tagged regions, but excludes any regions tagged foo (nested or otherwise).

• **;!foo — selects all the lines of the document except for regions tagged foo.

• **;!* — selects only the regions of the document outside of tags (i.e., non-tagged regions).

There are also some shorthands if only exclusions are specified:

• !foo — equivalent to **;!foo; an exclusion without an inclusion implicitly starts by selecting all
the lines.

• !* — equivalent to **;!*; only selects regions that are not tagged.

28.6.3. By line ranges

To include content by line range, assign a starting line number and an ending line number
separated by a pair of dots (e.g., lines=1..5) to the lines attribute.
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include::filename.txt[lines=5..10]

You can specify multiple ranges by separating each range by a comma. Since commas are normally
used to separate individual attributes, you must quote the comma-separated list of ranges.

include::filename.txt[lines="1..10,15..20"]

To avoid having to quote the list of ranges, you can instead separate them using semi-colons.

include::filename.txt[lines=7;14..25;28..43]

If you don’t know the number of lines in the document, or you don’t want to couple the range to the
length of the file, you can refer to the last line of the document using the value -1.

include::filename.txt[lines=12..-1]

28.7. Normalize Block Indentation
Source code snippets from external files are often padded with a leading block indent. This leading
block indent is relevant in its original context. However, once inside the documentation, this
leading block indent is no longer needed.

The attribute indent allows the leading block indent to be stripped and, optionally, a new block
indent to be set for blocks with verbatim content (listing, literal, source, verse, etc.).

• When indent is 0, the leading block indent is stripped

• When indent is > 0, the leading block indent is first stripped, then the content is indented by the
number of columns equal to this value.

If the tabsize attribute is set on the block or the document, tabs are also replaced with the number
of spaces specified by that attribute, regardless of whether the indent attribute is set.

For example, this AsciiDoc source:

[source,ruby,indent=0]
----
    def names
      @name.split ' '
    end
----

Produces:
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def names
  @name.split ' '
end

This AsciiDoc source:

[indent=2]
----
    def names
      @name.split ' '
    end
----

Produces:

  def names
    @name.split ' '
  end

28.8. Include Content from a URI
The include directive recognizes when the target is a URI and can include the content referenced by
that URI.

Including content from a URI

This example demonstrates how to include an AsciiDoc file from a GitHub repo directly into
your document.

include::https://raw.githubusercontent.com/asciidoctor/asciidoctor/master/README.a
doc[]

For security reasons, this capability is not enabled by default. To allow content to be read from a
URI, you must enable the URI read permission by:

1. running Asciidoctor in SERVER mode or less and

2. setting the allow-uri-read attribute securely (i.e., from the CLI or API).

Here’s an example that shows how to run Asciidoctor from the console so it can read content from
a URI:

$ asciidoctor -a allow-uri-read filename.adoc
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Remember that Asciidoctor executes in SAFE mode by default when run from the command line.

Here’s an example that shows how to run Asciidoctor from the API so it can read content from a
URI:

Asciidoctor.convert_file 'filename.adoc', safe: :safe, attributes: { 'allow-uri-read'
=> '' }



Including content from sources outside your control carries certain risks,
including the potential to introduce malicious behavior into your documentation.
Because allow-uri-read is a potentially dangerous feature, it is forcefully disabled
when the safe mode is SECURE or higher.

URI vs URL

URI stands for Uniform Resource Identifier. When we talk about a URI, we’re usually talking
about a URL, or Uniform Resource Locator. A URL is simply a URI that points to a resource
over a network, or web address.

As far as Asciidoctor is concerned, all URIs share the same restriction, whether or not it’s
actually local or remote, or whether it points to a web address (http or https prefix), FTP
address (ftp prefix), or some other addressing scheme.

The same restriction described in this section applies when embedding an image referenced from a
URI, such as when data-uri is set or when converting to PDF using Asciidoctor PDF.

28.9. Caching URI Content
Reading content from a URI is obviously much slower than reading it from a local file.

Asciidoctor provides a way for the content read from a URI to be cached, which is highly
recommended.

To enable the built-in cache, you must:

1. Install the open-uri-cached gem.

2. Set the cache-uri attribute in the document.

When these two conditions are satisfied, Asciidoctor caches content read from a URI according the
to HTTP caching recommendations.

28.10. Include a File Multiple Times in the Same
Document
A document can include the same file any number of times. The problem comes if there are IDs in
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the included file; the output document (HTML or DocBook) will then have duplicate IDs which will
make it not well-formed. To fix this, you can reference a dynamic variable from the main document
in the ID.

For example, let’s say you want to include the same subsection describing a bike chain in both the
operation and maintenance chapters:

= Bike Manual

:chapter: operation
== Operation

include::fragment-chain.adoc[]

:chapter: maintenance
== Maintenance

include::fragment-chain.adoc[]

Write fragment-chain.adoc as:

[id='chain-{chapter}']
=== Chain

See xref:chain-{chapter}[].

The first time the fragment-chain.adoc file is included, the ID of the included section resolves to
chain-operation. The second time the file included, the ID resolves to chain-maintenance.

In order for this to work, you must use the long-hand forms of both the ID assignment and the
cross-reference. The single quotes around the variable name in the assignment are required to
force variable substitution (aka interpolation).

28.11. Using an Include in a List Item
You can use the include directive to include the content of a list item from another file, but there
are some things you need to be aware of.

Recall that the include directive must be defined on a line by itself. This presents a challenge with
lists since each list item must begin with the list marker. We can solve this by using the built-in
blank attribute to initiate the list item, then follow that line with the include directive to bring in the
actual content.

Here’s an example of how to use the blank attribute and the include directive to define a list item,
then include the primary text from another file:
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* {blank}
include::item-text.adoc[]

This technique works well if you control the contents of the included file and can ensure it only
contains adjacent lines of text. If a list item does not contain adjacent lines, the list may be
terminated. So we need a bit more syntax.

If you can’t guarantee that all the included lines will be adjacent, you’ll want to tuck the include
directive inside an open block. This keeps all the include lines together, enclosed inside the
boundaries of the block. You then attach this block to the list item using a list continuation (i.e., +).

Here’s an example of how to include complex content from another file into a list item:

* {blank}
+
--
include::complex-list-item.adoc[]
--

See Dropping the principal text for another example of this technique.
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Chapter 29. Images
To include an image on its own line (i.e., a block image), use the image:: prefix in front of the file
name and square brackets after it.

image::sunset.jpg[]

If you want to specify alt text, include it inside the square brackets:

image::sunset.jpg[Sunset]

You can also give the image an id, a title, set its dimensions and make it a link.

[#img-sunset] ①
.A mountain sunset ②
[link=https://www.flickr.com/photos/javh/5448336655] ③
image::sunset.jpg[Sunset,300,200] ④ ⑤

① Assigns an ID to the block; see Defining an Anchor.

② Defines the title of the block image, which gets displayed underneath the image when rendered.

③ link makes the image a link (this can also be defined inside the attribute list of the block macro)

④ The first positional attribute, Sunset, is the image’s alt text.

⑤ The second and third positional attributes define the width and height, respectively.
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A hyperlinked image with caption

Figure 1: A mountain sunset

Block images are prefixed by a caption label (Figure) and number automatically. To turn off figure
caption labels and numbers, add the figure-caption attribute to the document header and unset it.

:figure-caption!:

If you want to include an image inline, use the image: prefix instead (notice there is only one colon):

Click image:icons/play.png[Play, title="Play"] to get the party started.

Click image:icons/pause.png[title="Pause"] when you need a break.

Click  to get the party started.

Click  when you need a break.

For inline images, the optional title is displayed as a tooltip.

29.1. Setting the Location of Images
The path to the location of images is controlled by the imagesdir document attribute. The value of
this attribute (empty by default) is added to the beginning of every image target. Therefore, you
never need to reference this attribute. You only need to set it.

Incorrect

image::{imagesdir}/name-of-image.png[]

Correct

image::name-of-image.png[]
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The resolved location of the image will be: <imagesdir> + <target>.

The benefit of the processor adding the value of the imagesdir attribute to the start of all image
targets is that you can globally control the folder where images are located per converter. We refer
to this folder as the image catalog. Since different output formats require the images to be in
different locations, this attribute makes it possible to accomodate many different scenarios.

We recommend relying on the imagesdir attribute when defining the target of your image to avoid
hard-coding that common path in every single image macro. Always think about where the image is
relative to the image catalog.

The imagesdir attribute value can be an absolute path, relative path or URI. By default, the value of
the imagesdir attribute is empty, which means these images are resolved relative to the document.
If the image target is an absolute path or URI, the imagesdir prefix is not added to the path.


You can set the imagesdir attribute in multiple places in your document, as long as
it is not locked by the API. This technique is useful if you store images for different
parts, chapters, or sections of your document in different locations.

29.1.1. Include Images by Full URL

Asciidoctor supports remote (i.e., images with a URL target) block and inline images. You can
reference images served from any URL (e.g., your blog, an image hosting service, your docs server,
etc.) and never have to worry about downloading the images and putting them somewhere locally.

Here are a few examples of images that have a URL target:

Block image with a URL target

image::https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg[Tux,250,350]

[Tux] | https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg

Inline image with a URL target

You can find
image:https://upload.wikimedia.org/wikipedia/commons/3/35/Tux.svg[Linux,25,35]
everywhere these days.

You can find [Linux] everywhere these days.

 The value of imagesdir is ignored when the image target is a URI.

If you want to avoid typing the URL prefix for every image, and all the images are located on the
same server, you can use the imagesdir attribute to set the base URL:
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Using a URL as the base URL for images

:imagesdir-old: {imagesdir}
:imagesdir: https://upload.wikimedia.org/wikipedia/commons

image::3/35/Tux.svg[Tux,250,350]

:imagesdir: {imagesdir-old}

This time, the imagesdir is used since the image target is not a URL (the imagesdir just happens to
be one).


This feature is included in the AsciiDoc compatibility file so that AsciiDoc gets it
right too.

29.2. Putting Images in Their Place
Images are a great way to enhance the text, whether to illustrate an idea, show rather than tell, or
just help the reader connect with the text.

Out of the box, images and text behave like oil and water. Images don’t like to share space with text.
They are kind of “pushy” about it. That’s why we focused on tuning the controls in the image
macros so you can get the images and the text to flow together.

There are two approaches you can take when positioning your images:

1. Named attributes

2. Roles

29.2.1. Positioning attributes

Asciidoctor supports the align attribute on block images to align the image within the block (e.g.,
left, right or center). The named attribute float can be applied to both the block and inline image
macros. Float pulls the image to one side of the page or the other and wraps block or inline content
around it, respectively.

Here’s an example of a floating block image. The paragraphs or other blocks that follow the image
will float up into the available space next to the image. The image will also be positioned
horizontally in the center of the image block.

A block image pulled to the right and centered within the block

image::tiger.png[Tiger,200,200,float="right",align="center"]

Here’s an example of a floating inline image. The image will float into the upper-right corner of the
paragraph text.
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An inline image pulled to the right of the paragraph text

image:linux.png[Linux,150,150,float="right"]
You can find Linux everywhere these days!

When you use the named attributes, CSS gets added inline (e.g., style="float: left"). That’s bad
practice because it can make the page harder to style when you want to customize the theme. It’s
far better to use CSS classes for these sorts of things, which map to roles in AsciiDoc terminology.

29.2.2. Positioning roles

Here are the examples from above, now configured to use roles that map to CSS classes in the
default Asciidoctor stylesheet:

Block image macro using positioning roles

[.right.text-center]
image::tiger.png[Tiger,200,200]

Inline image macro using positioning role

image:sunset.jpg[Sunset,150,150,role="right"] What a beautiful sunset!

The following table lists all the roles available out of the box for positioning images.

Roles for positioning images

Float Align

Role left right text-left text-right text-center

Block Image     

Inline Image     

Merely setting the float direction on an image is not sufficient for proper positioning. That’s
because, by default, no space is left between the image and the text. To alleviate this problem, we’ve
added sensible margins to images that use either the positioning named attributes or roles.

If you want to customize the image styles, perhaps to customize the margins, you can provide your
own additions to the stylesheet (either by using your own stylesheet that builds on the default
stylesheet or by adding the styles to a docinfo file).

 The shorthand syntax for a role (.) can not yet be used with image styles.

29.2.3. Framing roles

It’s common to frame the image in a border to further offset it from the text. You can style any block
or inline image to appear as a thumbnail using the thumb role (or th for short).
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The thumb role doesn’t alter the dimensions of the image. For that, you need to
assign the image a height and width.

Here’s a common example for adding an image to a blog post. The image floats to the right and is
framed to make it stand out more from the text.

image:logo.png[role="related thumb right"] Here's text that will wrap around the image
to the left.

Notice we added the related role to the image. This role isn’t technically required, but it gives the
image semantic meaning.

29.2.4. Control the float

When you start floating images, you may discover that too much content is floating around the
image. What you need is a way to clear the float. That is provided using another role, float-group.

Let’s assume that we’ve floated two images so that they are positioned next to each other and we
want the next paragraph to appear below them.

[.left]
.Image A
image::a.png[A,240,180]

[.left]
.Image B
image::b.png[B,240,180,title="Image B"]

Text below images.

When this example is converted, then viewed a browser, the paragraph text appears to the right of
the images. To fix this behavior, you just need to “group” the images together in a block with self-
contained floats. Here’s how it’s done:

[.float-group]
--
[.left]
.Image A
image::a.png[A,240,180]

[.left]
.Image B
image::b.png[B,240,180]
--

Text below images.
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This time, the text will appear below the images where we want it.

29.3. Sizing Images
Since images often need to be sized according to the medium, there are several ways to specify an
image size.

In most output formats, the specified width is obeyed unless the image would exceed the content
width or height, in which case it scaled to fit while maintaining the original aspect ratio (i.e.,
responsive scaling).

29.3.1. width and height

The primary way to specify the size of an image is to define the width and height attributes on the
image macro. Since these two attributes are so common, they are the second and third (unnamed)
positional attributes on the image macros.

image::flower.jpg[Flower,640,480]

That’s equivalent to the long-hand version:

image::flower.jpg[alt=Flower,width=640,height=480]

While the values of width and height can be used to scale the image, these attributes are primarily
intended to specify the intrinsic (or faux-intrinsic, aka too-lazy-to-resize) size of the image in CSS
pixels.[1] The width and height attributes are mapped to attributes of the same name on the <img>
element in the HTML output. These attributes are important because they provide a hint to the
browser to tell it how much space to reserve for the image during layout to minimize page reflows.

Automatic image scaling

The default Asciidoctor stylesheet implements responsive images (using width-wise scaling).
If the width of the screen is smaller than the width of the image, the image will be scaled
down to fit. To support this feature, the original aspect ratio of the image is preserved at all
sizes. Thus, when you set the dimensions, the values should reflect the original aspect ratio of
the image as this will be enforced. If the values don’t match the aspect ratio, the height is
ignored by the browser.

29.3.2. pdfwidth

Asciidoctor recognizes the following attributes to size images when converting to PDF using
Asciidoctor PDF:

• pdfwidth - The preferred width of the image in the PDF when converting using Asciidoctor PDF.
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The pdfwidth attribute accepts the following units:

px Output device pixels (assumed to be 96 dpi)

pt (or none) Points (1/72 of an inch)

pc Picas (1/6 of an inch)

cm Centimeters

mm Millimeters

in Inches

% Percentage of the content width (area between margins)

vw Percentage of the page width (edge to edge)

If pdfwidth is not provided, Asciidoctor PDF also accepts scaledwidth, or width (no units, assumed to
be pixels), in that order.

See image scaling in Asciidoctor PDF for more details.

29.3.3. scaledwidth

Asciidoctor recognizes the following attributes to size images when converting to PDF using the
DocBook toolchain:

• scaledwidth - The preferred width of the image when converting to PDF using the DocBook
toolchain. (mutually exclusive with scale)

• scale - Scales the original image size by this amount when converting to PDF using the DocBook
toolchain (mutually exclusive with scaledwidth).

scaledwidth sizes images much like pdfwidth, except it does not accept the vw unit.

The value of scaledwidth when used with DocBook can have the following units:

px Output device pixels (assumed to be 72 dpi)

pt Points (1/72 of an inch)

pc Picas (1/6 of an inch)

cm Centimeters

mm Millimeters

186

https://github.com/asciidoctor/asciidoctor-pdf#image-scaling


in Inches

em Ems (current font size)

% (or none) Percentage of intrinsic image size

DocBook also accepts the width attribute if scaledwidth is not provided.

29.3.4. Image Sizing Recap

Image sizing attributes

Backend Absolute size Relative to original
size

Relative to content
width

Relative to page
width

html width=120
(assumed to be px)

Not possible width=50% Not possible

pdf pdfwidth=100mm
(or cm, in, pc, pt, px)

Not possible pdfwidth=80% pdfwidth=50vw

docbook scaledwidth=100mm
(or cm, em, in, pc, pt,
px)

scale=80 scaledwidth=50% Not possible

Here’s an example of how you might bring these attributes together to control the size of an image
in various output formats:

image::flower.jpg[Flower,640,480,pdfwidth=50%,scaledwidth=50%]

A practice you might consider is using attributes to set the values for each output:
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ifdef::backend-html5[]
:twoinches: width='144'
:full-width: width='100%'
:half-width: width='50%'
:half-size:
:thumbnail: width='60'
endif::[]
ifdef::backend-pdf[]
:twoinches: pdfwidth='2in'
:full-width: pdfwidth='100vw'
:half-width: pdfwidth='50vw'
:half-size: pdfwidth='50%'
:thumbnail: pdfwidth='20mm'
endif::[]
ifdef::backend-docbook5[]
:twoinches: width='50mm'
:full-width: scaledwidth='100%'
:half-width: scaledwidth='50%'
:half-size: width='50%'
:thumbnail: width='20mm'
endif::[]

Then you can specify a half-size image using:

image::image.jpg[{half-size}]

In addition to providing consistency across your document, this technique will help insulate you
from future changes. For a more detailed example, see this thread on the discussion list.

29.4. Taming SVGs
Both block and inline image macros have built-in support for scalable vector graphics (SVGs). But
there’s more than one way to include an SVG into a web page, and the strategy used can effect how
the SVG behaves (or misbehaves). Therefore, these macros provide additional options to control
how the SVG is included (i.e., referenced).

When the image target is an SVG, the options attribute on the macro accepts one of three values:

• none (default)

• interactive

• inline

The following table demonstrates the impact these options have.

Demonstration of option values for SVG images
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image::sample.svg[Static,300]

image::sample.svg[Interactive,300,opts=inter
active]

Observe that the color changes when hovering
over the SVG.

image::sample.svg[Embedded,300,opts=inline]

Observe that the color changes when hovering
over the SVG. The SVG also inherits CSS from the
document stylesheets.

How the options value works and when it should be used is described below:

Option values for SVG images (HTML output)

Option HTML
Element Used

Effect When To Use

none (default) <img> Image is rasterized Static image, no interactivity, no
custom fonts

interactive <object> Image embedded as a live,
interactive object (aka “content
document”)

For using CSS animations,
scripting, webfonts

inline <svg> The SVG is embedded directly
into the HTML itself.

For using CSS animations,
scripting, webfonts, when you
require search engines to
search the SVG content.

To allow SVG content reachable
by JavaScript in the main DOM
or to inherit styles from the
main DOM.

When using the inline or interactive options, the viewBox attribute must be defined on the root
<svg> element in order for scaling to work properly.

When using the inline option, if you specify a width or height on the image macro in AsciiDoc, the
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width, height and style attributes on the <svg> element will be removed. Additionally, when using
inline the primary SVG elements (e.g., <svg>) cannot have a namespace.

If using the interactive option, you must link to the CSS that declares the fonts in the SVG file using
an XML stylesheet declaration.

If you’re inserting an SVG using either the inline or interactive options, we strongly recommend
you optimize your SVG using a tool like svgo or SVG Editor.

As you work with SVG, you’ll become more comfortable making the decision about which method
to employ given the circumstances. It’s only confusing when you first encounter the choice. To
learn more about using SVG on the web, consult the online book SVG on the Web: A Practical Guide
as well as these articles about SVG.

29.5. Summary
Block and inline image attributes and values

Attribute Value(s) Example Syntax Comments

imagesdir empty,
absolute path,
relative path or
base URL

:imagesdir: media If the image target is a URL or
an absolute path, the imagesdir
prefix is not added; Default is
empty value

id User defined
text

id=sunset-img
(or [[sunset-img]] or [#sunset-
img] above block macro)

alt User defined
text in first
position of
attribute list or
named
attribute

image::sunset.jpg[Brilliant
sunset]
(or alt=Sunset)

title User defined
text

title="A mountain sunset"
(or .A mountain sunset above
block macro)

Blocks: title displayed below
image; Inline: title displayed as
tooltip

caption User defined
text

caption="Figure 8: " Only applies to block images.

width User defined
size in pixels

image::sunset.jpg[Sunset,300]
(or width=300)

height User defined
size in pixels

image::sunset.jpg[Sunset,300,2
00]
(or height=200)

link User defined
location of
external URI

link=https://www.flickr.com/ph
otos/javh/5448336655
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Attribute Value(s) Example Syntax Comments

scale A scaling factor
to apply to the
intrinsic image
dimensions

scale=80 DocBook only

scaledwidth User defined
width for block
images

scaledwidth=25% DocBook only

pdfwidth User defined
width for
images in a
PDF

pdfwidth=80vw Asciidoctor PDF only

align left, center,
right

align=left Block images only; Align and
float attributes are mutually
exclusive

float left, right float=right Block images only; float and
align attributes are mutually
exclusive; to scope the float, use
a float group.

role left, right, th,
thumb, related,
rel

role="thumb right"
(or [.thumb.right] above block
macro)

Inline images can use role to
float images left and right; Role
shorthand (.) can not be used
on images

[1] See https://www.w3.org/TR/2014/REC-html5-20141028/embedded-content-0.html#dimension-attributes
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Chapter 30. Video
The block video macro enables you to embed videos into your documentation. You can embed self-
hosted videos or videos shared on popular video hosting sites such as YouTube and Vimeo.

The video formats Asciidoctor supports is dictated by the formats supported by the browser (and, in
turn, the user’s system). While this was once a precarious ordeal, HTML5 has brought sanity to
video support in the browser by adding a dedicated <video> element and by introducing several
standard video formats. Those formats are now widely supported across browsers and systems.

For a canonical list of supported web video formats and their interaction with modern browsers,
see the Mozilla Developer Supported Media Formats documentation.

A recommendation for serving video to browsers

Where appropriate, we recommend using a video hosting service like YouTube or Vimeo to
serve videos in online documentation. These services specialize in streaming optimized video
to the browser, with the lowest latency possible given hardware, software, and network
capabilities of the device viewing the video.

Vimeo even offers a white label mode so users aren’t made aware that the video is being
served through its service.

See YouTube and Vimeo videos for details about how to serve videos from these services.

Basic video file include

video::video_file.mp4[]

You can control the video settings using additional attributes on the macro. For instance, you can
offset the start time of playback using the start attribute and enable autoplay using the autoplay
option.

Setting attributes for local video playback

video::video_file.mp4[width=640, start=60, end=140, options=autoplay]

You can include a caption on the video using the title attribute.

Adding a caption to a video

.A walkthrough of the product
video::video_file.mp4[]
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30.1. YouTube and Vimeo videos
The video macro supports embedding videos from external video hosting services like YouTube and
Vimeo. Asciidoctor automatically generates the correct code to embed the video in the HTML
output.

To use this feature, put the video ID in the macro target and the name of the hosting service in the
first positional attribute.

Embedding a YouTube video

video::rPQoq7ThGAU[youtube]

Embedding a Vimeo video

video::67480300[vimeo]

30.2. Supported Attributes
Video attributes and values

Attribute Value(s) Example Syntax Comments

title User defined
text

.An ocean sunset

poster A URL to an
image to show
until the user
plays or seeks.

poster=sunset.jpg Can be specified as the first
positional (unnamed) attribute.
Also used to specify the service
when referring to a video
hosted on YouTube (youtube) or
Vimeo (vimeo).

width User-defined
size in pixels.

width=640 Can be specified as the second
positional (unnamed) attribute.

height User-defined
size in pixels.

height=480 Can be specified as the third
positional (unnamed) attribute.

options autoplay, loop,
modest,
nocontrols,
nofullscreen

opts="autoplay,loop" The controls are enabled by
default. The modest option
enables modest branding for a
YouTube video.

start User-defined
playback start
time in
seconds.

start=30
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Attribute Value(s) Example Syntax Comments

end User-defined
playback end
time in
seconds.

end=90

theme The YouTube
theme to use
for the frame.

theme=light Valid values are dark (the
default) and light.

lang The language
used in the
YouTube
frame.

lang=fr A two-letter language code or
fully specified locale.
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Chapter 31. Audio
Audio attributes and values

Attribute Value(s) Example Syntax Comments

options autoplay, loop,
controls,
nocontrols

audio::ocean_waves.mp3[options
="autoplay,loop"]

The controls value is enabled by
default
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Chapter 32. Admonition
There are certain statements you may want to draw attention to by taking them out of the content’s
flow and labeling them with a priority. These are called admonitions. It’s rendered style is
determined by the assigned label (i.e., value). Asciidoctor provides five admonition style labels:

• NOTE

• TIP

• IMPORTANT

• CAUTION

• WARNING

Caution vs. Warning

When choosing the admonition type, you may find yourself getting confused between
"caution" and "warning" as these words are often used interchangeably. Here’s a simple rule
to help you differentiate the two:

• Use CAUTION to advise the reader to act carefully (i.e., exercise care).

• Use WARNING to inform the reader of danger, harm, or consequences that exist.

To find a deeper analysis, see https://www.differencebetween.com/difference-between-
caution-and-vs-warning/.

When you want to call attention to a single paragraph, start the first line of the paragraph with the
label you want to use. The label must be uppercase and followed by a colon (:).

Admonition paragraph syntax

WARNING: Wolpertingers are known to nest in server racks. ① ②
Enter at your own risk.

① The label must be uppercase and immediately followed by a colon (:).

② Separate the first line of the paragraph from the label by a single space.

Result: Admonition paragraph

WARNING Wolpertingers are known to nest in server racks. Enter at your own risk.

When you want to apply an admonition to complex content, set the label as a style attribute on a
block. As seen in the next example, admonition labels are commonly set on example blocks. This
behavior is referred to as masquerading. The label must be uppercase when set as an attribute on
a block.
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Admonition block syntax

[IMPORTANT] ①
.Feeding the Werewolves
==== ②
While werewolves are hardy community members, keep in mind the following dietary
concerns:

. They are allergic to cinnamon.

. More than two glasses of orange juice in 24 hours makes them howl in harmony with
alarms and sirens.
. Celery makes them sad.
====

① Set the label in an attribute list on a delimited block. The label must be uppercase.

② Admonition styles are commonly set on example blocks. Example blocks are delimited by four
equal signs (====).

Result: Admonition block

IMPORTANT

Feeding the Werewolves

While werewolves are hardy community members, keep in mind the
following dietary concerns:

1. They are allergic to cinnamon.

2. More than two glasses of orange juice in 24 hours makes them howl
in harmony with alarms and sirens.

3. Celery makes them sad.

In the examples above, the admonition is rendered in a callout box with the style label in the gutter.
You can replace the textual labels with icons by setting the icons attribute on the document. This is
how the WARNING admonition paragraph renders when icons is set and assigned the font value.

Admonition paragraph with icons set

:icons: font

WARNING: Wolpertingers are known to nest in server racks.
Enter at your own risk.

Result: Admonition paragraph with icons set

 Wolpertingers are known to nest in server racks. Enter at your own risk.

Learn more about using Font Awesome or custom icons with admonitions in the icons section.
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Chapter 33. Sidebar
Use a sidebar for ancillary content that doesn’t fit into the flow of the document’s narrative. A
sidebar can be titled and contain any type of content such as source code and images.

Sidebar syntax

.AsciiDoc history ①
**** ②
AsciiDoc was first released in Nov 2002 by Stuart Rackham.
It was designed from the start to be a shorthand syntax
for producing professional documents like DocBook and LaTeX.
****

① A title is optional.

② A sidebar is delimited by four asterisks (****).

Result: Sidebar with title

AsciiDoc history

AsciiDoc was first released in Nov 2002 by Stuart Rackham. It was designed from the
start to be a shorthand syntax for producing professional documents like DocBook and
LaTeX.
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Chapter 34. Example
Example syntax

.Sample document
====
Here's a sample AsciiDoc document:

[listing]
....
= Title of Document
Doc Writer
:toc:

This guide provides...
....

The document header is useful, but not required.
====

Result: Example block

Sample document

Here’s a sample AsciiDoc document:

= Title of Document
Doc Writer
:toc:

This guide provides...

The document header is useful, but not required.
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Chapter 35. Prose Excerpts, Quotes and
Verses
Prose excerpts, quotes and verses share the same syntax structure, including:

• block name, either quote or verse

• name of who the content is attributed to

• bibliographical information of the book, speech, play, poem, etc., where the content was drawn
from

• excerpt text

35.1. Quote
For content that doesn’t require the preservation of line breaks, set the quote attribute in the first
position of the attribute list. Next, set the attribution and relevant citation information. However,
these positional attributes are optional.

Anatomy of a basic quote

[quote, attribution, citation title and information]
Quote or excerpt text

If the quote is a single line or paragraph, you can place the attribute list directly on top of the text.

Quote paragraph syntax

.After landing the cloaked Klingon bird of prey in Golden Gate park: ①
[quote, Captain James T. Kirk, Star Trek IV: The Voyage Home] // <2> ③ ④
Everybody remember where we parked. ⑤

① Mark lead-in text explaining the context or setting of the quote using a period (.). (optional)

② For content that doesn’t require the preservation of line breaks, set quote in the first position of
the attribute list.

③ The second position contains who the excerpt is attributed to. (optional)

④ Enter additional citation information in the third position. (optional)

⑤ Enter the excerpt or quote text on the line immediately following the attribute list.

Result: Quote paragraph

After landing the cloaked Klingon bird of prey in Golden Gate park:

Everybody remember where we parked.

— Captain James T. Kirk, Star Trek IV: The Voyage Home
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If the quote or excerpt is more than one paragraph, place the text between delimiter lines
consisting of four underscores (____).

Quote block syntax

[quote, Monty Python and the Holy Grail]
____
Dennis: Come and see the violence inherent in the system. Help! Help! I'm being
repressed!

King Arthur: Bloody peasant!

Dennis: Oh, what a giveaway! Did you hear that? Did you hear that, eh? That's what I'm
on about! Did you see him repressing me? You saw him, Didn't you?
____

Result: Quote block

Dennis: Come and see the violence inherent in the system. Help! Help!
I’m being repressed!

King Arthur: Bloody peasant!

Dennis: Oh, what a giveaway! Did you hear that? Did you hear that, eh?
That’s what I’m on about! Did you see him repressing me? You saw him,
Didn’t you?

— Monty Python and the Holy Grail

Asciidoctor also provides three alternative ways to markup quotes and prose excerpts.

35.1.1. Quoted paragraph

You can turn a single paragraph into a blockquote by:

1. surrounding it with double quotes

2. adding an optional attribution (prefixed with two dashes) below the quoted text

Quoted paragraph syntax

"I hold it that a little rebellion now and then is a good thing,
and as necessary in the political world as storms in the physical."
-- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11
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Result: Quoted paragraph

I hold it that a little rebellion now and then is a good thing, and as
necessary in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

35.1.2. Air quotes

Air quotes are two double quotes on each line, emulating the gesture of making quote marks with
two fingers on each hand.

[, James Baldwin]
""
Not everything that is faced can be changed.
But nothing can be changed until it is faced.
""

Result: Air quotes

"" Not everything that is faced can be changed. But nothing can be changed until it is faced. ""

35.1.3. Markdown-style blockquotes

Asciidoctor supports Markdown-style blockquotes.

Markdown-style blockquote syntax

> I hold it that a little rebellion now and then is a good thing,
> and as necessary in the political world as storms in the physical.
> -- Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Result: Markdown-style blockquote

I hold it that a little rebellion now and then is a good thing, and as
necessary in the political world as storms in the physical.

— Thomas Jefferson, Papers of Thomas Jefferson: Volume 11

Like Markdown, Asciidoctor supports block content inside the blockquote, including nested
blockquotes.

202

https://en.wikipedia.org/wiki/Air_quotes


Markdown-style blockquote containing block content

> > What's new?
>
> I've got Markdown in my AsciiDoc!
>
> > Like what?
>
> * Blockquotes
> * Headings
> * Fenced code blocks
>
> > Is there more?
>
> Yep. AsciiDoc and Markdown share a lot of common syntax already.

Here’s how this conversation renders.

Result: Markdown-style blockquote with block content

What’s new?

I’ve got Markdown in my AsciiDoc!

Like what?

• Blockquotes

• Headings

• Fenced code blocks

Is there more?

Yep. AsciiDoc and Markdown share a lot of common syntax already.

35.2. Verse
When you need to preserve indents and line breaks, use the verse block name. Verses are defined
by setting verse on a paragraph or an excerpt block delimited by four underscores (____).

Verse paragraph syntax

[verse, Carl Sandburg, two lines from the poem Fog]
The fog comes
on little cat feet.
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Result: Verse paragraph

The fog comes
on little cat feet.

— Carl Sandburg, two lines from the poem Fog

When the verse content includes blank or indented lines, enclose it in an excerpt block.

Verse delimited block syntax

[verse, Carl Sandburg, Fog]
____
The fog comes
on little cat feet.

It sits looking
over harbor and city
on silent haunches
and then moves on.
____

Result: verse block

The fog comes
on little cat feet.

It sits looking
over harbor and city
on silent haunches
and then moves on.

— Carl Sandburg, Fog
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Chapter 36. Comments
Line

// A single-line comment.

 Single-line comments can be used to divide elements, such as two adjacent lists.

Block

////
A multi-line comment.

Notice it's a delimited block.
////
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Chapter 37. Text Substitutions
Text substitution elements replace characters, markup, attribute references, and macros with
converter specific styles and values. When Asciidoctor processes a document it uses a set of six text
substitution elements. The processor runs the text substitution elements in the following order.

1. Special characters

2. Quotes

3. Attribute references

4. Replacements

5. Inline macros

6. Post replacements

In turn, these substitutions are organized into composite value groups. The table below shows
which substitution elements are included in each group.

Substitution groups

Group Special
characters

Quotes Attributes Replacem
ents

Macros Post
replaceme

nts

Header      

None      

Normal      

Pass      

Verbatim      

By default, the normal substitution group is applied to most block and inline elements. However,
there are a few exceptions.

The header substitution group is applied to metadata lines (author and revision information) in the
document header. This group is also applied to the values of attribute entries, regardless of whether
those entries are defined in the header or elsewhere in the document. In the header, only special
characters and attribute references are replaced. In attribute entries, you can also use the inline
pass macro.

Fenced, literal, listing, and source blocks are processed with the verbatim substitution group. Only
special characters are replaced in these blocks.

The pass substitution group can only be applied to passthrough elements. Attribute references and
macros are replaced in passthroughs.

The none substitution group is applied to comment blocks.
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The title substitution group

The title substitution group includes the same text substitutions as the normal group.
However, the order that the substitutions are executed is slightly different. Text substitutions
are applied to titles in the following sequence:

1. Special characters

2. Quotes

3. Replacements

4. Inline macros

5. Attribute references

6. Post replacements

37.1. Special Characters
When applicable, the first text substitution to occur is the replacement of any special characters.
This process is handled by the specialchars element. The specialchars element searches for three
characters (<, >, &) and replaces them with their named character references.

• The less than symbol, <, is replaced with the named character reference &lt;.

• The greater than symbol, >, is replaced with the named character reference &gt;.

• An ampersand, &, is replaced with the named character reference &amp;.

By default, the special characters substitution occurs on all inline and block elements except for
comments and certain passthroughs. The substitution of special characters can be controlled on
blocks using the subs attribute and on inline elements using the passthrough macro.



Special character substitution precedes attribute substitution, so you will need to
manually escape any attributes containing special characters that you set in the
CLI or API. For example, on the command line, type -a toc-title="Sections,
Tables &amp; Figures" instead of -a toc-title="Sections, Tables & Figures".

37.2. Quotes
The quotes substitution replaces the formatting markup on inline elements.

For example, when a document is converted to HTML, any asterisks enclosing text are replaced
with <strong> HTML tags.

Syntax input

Happy werewolves are *really* slobbery.
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HTML output

Happy werewolves are <strong>really</strong> slobbery.

The following table shows the HTML markup that is generated by the quotes substitution process.

HTML markup generated from AsciiDoc formatting syntax

Name AsciiDoc HTML

emphasis _word_ <em>word</em>

strong *word* <strong>word</strong>

monospace `word` <code>word</code>

superscript ^word^ <sup>word</sup>

subscript ~word~ <sub>word</sub>

double curved quotes "`word`" &#8220;word&#8221;

single curved quotes '`word`' &#8216;word&#8217;

The quotes substitution occurs on formatted text within title, paragraph, example, quote, sidebar,
and verse blocks.

Elements subject to quotes text
substitution

Element quotes
substitution

Attribute Entry Value 

Comment 

Example 

Fenced 

Header 

Literal 

Listing 

Macro 

Open Varies

Paragraph 

Passthrough 

Quote 

Sidebar 

Source 

Special sections 
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Element quotes
substitution

Table Varies

Title 

Verse 

37.3. Attributes
Attribute references are replaced with their values when they’re processed by the attributes
substitution.

Elements subject to attributes text
substitution

Element attributes
substitution

Attribute Entry Value 

Comment 

Example 

Fenced 

Header 

Literal 

Listing 

Macro 

Open Varies

Paragraph 

Passthrough 

Quote 

Sidebar 

Source 

Special sections 

Table Varies

Title 

Verse 

37.4. Replacements
The replacements substitution processes textual characters such as marks, arrows and dashes and
replaces them with the decimal format of their Unicode code point, i.e. their numeric character
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reference.

Textual symbol replacements

Name Syntax Unicode
Replacemen

t

Rendered Notes

Copyright (C) &#169; ©

Registered (R) &#174; ®

Trademark (TM) &#8482; ™

Em dash -- &#8212;  —  Only replaced if between
two word characters,
between a word character
and a line boundary, or
flanked by spaces.

When flanked by space
characters (e.g., a -- b), the
normal spaces are replaced
by thin spaces (&#8201;).

Ellipsis ... &#8230; …

Single right arrow -> &#8594; →

Double right arrow => &#8658; ⇒

Single left arrow <- &#8592; ←

Double left arrow <= &#8656; ⇐

Typographic apostrophe Sam's Sam&#8217;s Sam’s The typewriter apostrophe
is replaced with the
typographic (aka curly)
apostrophe.



The replacements element depends on the substitutions completed by the
specialcharacters element. This is important to keep in mind when applying
custom substitutions to a block. See the section about applying custom
substitutions for more information.

The replacements substitution also recognizes HTML and XML character references as well as
decimal and hexadecimal Unicode code points and substitutes them for their corresponding
decimal form Unicode code point.

For example, to produce the <code>&sect;</code> symbol you could write
<code>&amp;sect;</code>, <code>&amp;#x00A7;</code>, or <code>&amp;#167;</code>. When the
document is processed, <code>replacements</code> will replace the section symbol reference,
regardless of whether it is a named character reference or a numeric character reference, with
<code>&amp;#167;</code>. In turn, <code>&amp;#167;</code> will display as <code>&sect;</code>.

211

https://en.wikipedia.org/wiki/List_of_XML_and_HTML_character_entity_references
https://en.wikipedia.org/wiki/List_of_Unicode_characters


Anatomy of a character reference

A character reference is a standard sequence of characters that is substituted for a single
character when Asciidoctor processes a document. There are two types of character
references: named character references and numeric character references.

A named character reference (often called a character entity reference) is a short name that
refers to a character (i.e., glyph). To make the reference, the name must be prefixed with an
ampersand (&) and end with a semicolon (;).

For example:

• <code>&amp;dagger;</code> displays as &dagger;

• <code>&amp;euro;</code> displays as &euro;

• <code>&amp;loz;</code> displays as &loz;

Numeric character references are the decimal or hexadecimal Universal Character
Set/Unicode code points which refer to a character.

• The decimal code point references are prefixed with an ampersand (&), followed by a hash
(#), and end with a semicolon (;).

• Hexadecimal code point references are prefixed with an ampersand (&), followed by a
hash (#), followed by a lowercase x, and end with a semicolon (;).

For example:

• &#x2020; or &#8224; displays as †

• &#x20AC; or &#8364; displays as €

• <code>&amp;#x25CA;</code> or <code>&amp;#9674;</code> displays as &#x25CA;

Developers may be more familiar with using Unicode escape sequences to perform text
substitutions. For example, to produce an @ sign using a Unicode escape sequence, you would
prefix the hexadecimal Unicode code point with a backslash (\) and an uppercase or
lowercase u, i.e. u0040. However, Asciidoctor doesn’t process and replace Unicode escape
sequences at this time.


Asciidoctor also provides numerous built-in attributes for representing characters
and symbols. These attributes and their corresponding output are listed in
Predefined attributes for character replacements [1][2][3].

The replacements substitution occurs within title, paragraph, example, quote, sidebar, and verse
blocks.

Elements subject to replacements text
substitution
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Element replacements
substitution

Attribute Entry Value 

Comment 

Example 

Fenced 

Header 

Literal 

Listing 

Macro 

Open Varies

Paragraph 

Passthrough 

Quote 

Sidebar 

Source 

Special sections 

Table Varies

Title 

Verse 

37.5. Macros
Macros are processed by the macros element. The macros substitution replaces a macro’s content
with the appropriate built-in and user-defined configuration.

Elements subject to macros substitution

Element macros
substitution

Attribute Entry Value inline pass
macro only

Comment 

Example 

Fenced 

Header 

Literal 

Listing 
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Element macros
substitution

Macro 

Open Varies

Paragraph 

Passthrough 

Quote 

Sidebar 

Source 

Special sections 

Table Varies

Title 

Verse 

37.6. Post Replacements
The line break character, +, is replaced when the post_replacements process runs.

Elements subject to post replacements text
substitution

Element post_replaceme
nts

substitution

Attribute Entry Value 

Comment 

Example 

Fenced 

Header 

Literal 

Listing 

Macro 

Open Varies

Paragraph 

Passthrough 

Quote 

Sidebar 

Source 
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Element post_replaceme
nts

substitution

Special sections 

Table Varies

Title 

Verse 

37.7. Applying Substitutions
Specific substitution elements can be applied to any block or paragraph by setting the subs
attribute. The subs attribute can be assigned a comma separated list of the following substitution
elements and groups.

none Disables substitutions

normal Performs all substitutions except for callouts

verbatim Replaces special characters and processes callouts

specialchars, specialcharacters Replaces <, >, and & with their corresponding entities

quotes Applies text formatting

attributes Replaces attribute references

replacements Substitutes textual and character reference replacements

macros Processes macros

post_replacements Replaces the line break character (+)

Let’s look at an example where you only want to process special characters, formatting markup,
and callouts in a literal block. By default, literal blocks are only subject to special characters
substitution. But you can change this behavior by setting the subs attribute in the block’s attribute
list.

[source,java,subs="verbatim,quotes"] ①
----
System.out.println("Hello *bold* text"). ②
----

① The subs attribute is set in the attribute list and assigned the verbatim and quotes values.
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② The formatting markup in this line will be replaced when the quotes substitution runs.

System.out.println("Hello <strong>bold</strong> text"). ① ②

① The verbatim value enables the callouts to be processed.

② The quotes value enables the text formatting to be processed.



If you are applying the same set of substitutions to numerous blocks, you should
consider making them an attribute entry to ensure consistency.

:markup-in-source: verbatim,quotes

[source,java,subs="{markup-in-source}"]
----
System.out.println("Hello *bold* text").
----

Another way to ensure consistency and keep your documents clean and simple is
to use the TreeProcessor extension.

37.8. Incremental Substitutions
When you set the subs attribute on a block, you automatically remove all of its default
substitutions. For example, if you set subs on a literal block, and assign it a value of attributes, only
attributes are substituted. The verbatim substitution will not be applied. To remedy this situation,
Asciidoctor provides a syntax to append or remove substitutions instead of replacing them outright.

You can add or remove a substitution from the default substitution list using the plus (+) and minus
(-) modifiers. These are known as incremental substitutions.

<substitution>+ Prepends the substitution to the default list.

+<substitution> Appends the substitution to the default list.

-<substitution> Removes the substitution from the default list.

For example, you can add the attributes substitution to a listing block’s default substitution list.
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Add attributes substitution to a default substitution list

[source,xml,subs="attributes+"]
----
<version>{version}</version>
----

Similarly, you can remove the callouts substitution.

Remove callouts substitution from a default substitution list

[source,xml,subs="-callouts"]
.An illegal XML tag
----
①
  content inside "1" tag
</1>
----

You can also specify whether the substitution is placed at the beginning or end of the substitution
list. If a + comes before the name of the substitution, then it’s added to the end of the existing list,
and if a + comes after the name, it’s added to the beginning of the list.

[source,xml,subs="attributes+,+replacements,-callouts"]
----
<version>{version}</version>
<copyright>(C) ACME</copyright>
①
  content inside "1" tag
</1>
----

In the above example, the quotes, then the special characters, and then the attributes substitutions
will be applied to the listing block.

37.8.1. Applying Substitutions to Inline Elements

Custom substitutions can also be applied to some inline elements, such as the pass macro.

For example, the quotes text substitution value is assigned in the inline pass macro below.

The text pass:q[<u>underline *me*</u>] is underlined and the word "`me`" is bold.

The text <u>underline <strong>me</strong></u> is underlined and the word
&#8220;me&#8221; is bold.
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37.9. Preventing Substitutions
Asciidoctor provides several approaches for preventing substitutions.

Backslash escaping

To prevent punctuation from being interpreted as formatting markup, precede it with a backslash
(\). If the formatting punctuation begins with two characters (e.g., __), you need to precede it with
two backslashes (\\). This is also how you can prevent character and attribute references from
substitution. When your document is processed, the backslash is removed so it doesn’t display in
your output.

\*Stars* will appear as *Stars*, not as bold text.

\&sect; will appear as an entity, not the &sect; symbol.

\\__func__ will appear as __func__, not as emphasized text.

\{two-semicolons} will appear {two-semicolons}, not resolved as ;;.

You can also prevent substitutions with macro and block passthroughs.
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Chapter 38. Literal Text and Blocks
Literal paragraphs and blocks display the text you write exactly as you enter it. Literal text is
treated as preformatted text. The text is shown in a fixed-width font and endlines are preserved.
Only special characters and callouts are replaced when the document is converted.

Literal blocks are defined three ways:

1. Indenting the first line of a paragraph by one or more spaces

2. Applying the literal attribute to a paragraph or block

3. Using the literal block delimiter (.... )

When a line begins with one or more spaces it is displayed as a literal paragraph. This method is a
quick and easy way to insert code snippets.

Implicit literal text

 ~/secure/vault/defops

Result: Implicit literal text

~/secure/vault/defops

When you want an entire block of text to be literal and would prefer not to indent it, set the literal
attribute on top of the element.

Literal style paragraph syntax

[literal]
error: The requested operation returned error: 1954 Forbidden search for defensive
operations manual
absolutely fatal: operation initiation lost in the dodecahedron of doom
would you like to die again? y/n

Result: Literal style paragraph

error: The requested operation returned error: 1954 Forbidden search for defensive
operations manual
absolutely fatal: operation initiation lost in the dodecahedron of doom
would you like to die again? y/n

Finally, you can surround the content you want rendered as literal by enclosing it in a set of literal
block delimiters (....). This method is useful when the content consists of several elements that are
separated by blank lines.
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Literal delimited block syntax

....
Lazarus: Where is the *defensive operations manual*?

Computer: Calculating ...
Can not locate object that you are not authorized to know exists.
Would you like to ask another question?

Lazarus: Did the werewolves tell you to say that?

Computer: Calculating ...
....

Notice in the output that the bold text formatting is not applied to the text nor are the three
consecutive periods replaced by the ellipsis Unicode character.

Result: Literal delimited block

Lazarus: Where is the *defensive operations manual*?

Computer: Calculating ...
Can not locate object that you are not authorized to know exists.
Would you like to ask another question?

Lazarus: Did the werewolves tell you to say that?

Computer: Calculating ...
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Chapter 39. Listing Blocks
Like literal blocks, the content in listing blocks is displayed exactly as you entered it. Listing block
content is converted to <pre> text. The content in listing blocks is only subject to special character
and callout substitutions.

The listing block name can be applied to content two ways.

1. Set the listing attribute on the element.

2. Contain the content within a delimited listing block.

The listing block name is applied to an element, such as a paragraph, by setting the listing
attribute on that element.

Listing paragraph syntax

[listing]
This is an example of a paragraph styled with `listing`.
Notice that the monospace markup is preserved in the output.

Result: Listing paragraph

This is an example of a paragraph styled with `listing`.
Notice that the monospace markup is preserved in the output.

A delimited listing block is surrounded by lines composed of four hyphens (----).

Delimited listing block syntax

----
This is an example of a _listing block_.
The content inside is displayed as <pre> text.
----

Here’s how the block above appears when rendered as HTML.

Result: Listing block

This is an example of a _listing block_.
The content inside is displayed as <pre> text.

You should notice a few things about how the content is processed.

• the HTML tag <pre> is escaped
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• then endlines are preserved

• the phrase listing block is not italicized, despite having underscores around it.

Listing blocks are good for displaying raw source code, especially when used in tandem with the
source and source-highlighter attributes. The example below shows a listing block with source and
the language ruby applied to its content.

Source block syntax

.app.rb
[source,ruby]
----
require 'sinatra'

get '/hi' do
  "Hello World!"
end
----

Result: Listing block with the source attribute set

app.rb

require 'sinatra'

get '/hi' do
  "Hello World!"
end

Detailed instructions for using the source and source-highlighter attributes are provided in the
source code blocks section.

Listing block with custom substitutions syntax

:version: 1.5.6.1

[source,xml,subs="verbatim,attributes"]
----
<dependency>
  <groupId>org.asciidoctor</groupId>
  <artifactId>asciidoctor-java-integration</artifactId>
  <version>{version}</version>
</dependency>
----
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Result: Listing block with custom substitutions applied

<dependency>
  <groupId>org.asciidoctor</groupId>
  <artifactId>asciidoctor-java-integration</artifactId>
  <version>1.5.6.1</version>
</dependency>

39.1. To Wrap or to Scroll
The default Asciidoctor stylesheet wraps long lines in listing and literal blocks by applying the CSS
white-space: pre-wrap and word-wrap: break-word. The lines are wrapped at word boundaries,
similar to how most text editors wrap lines. This prevents horizontal scrolling which some users
considered a greater readability problem than line wrapping.

However, this behavior is configurable because there are times when you don’t want the lines in
listing and literal blocks to wrap.

There are two ways to prevent lines from wrapping so that horizontal scrolling is used instead:

• nowrap block option

• unset the prewrap document attribute (on by default)

You can use the nowrap option on literal or listing blocks to prevent lines from being wrapped in the
HTML.

Listing block with nowrap option syntax

[source%nowrap,java]
----
public class ApplicationConfigurationProvider extends HttpConfigurationProvider
{
   @Override
   public Configuration getConfiguration(ServletContext context)
   {
      return ConfigurationBuilder.begin()
               .addRule()
               .when(Direction.isInbound().and(Path.matches("/{path}")))
               .perform(Log.message(Level.INFO, "Client requested path: {path}"))
               .where("path").matches(".*");
   }
}
----

When the nowrap option is used, the nowrap class is added to the <pre> element. This class changes
the CSS to white-space: pre and word-wrap: normal.
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Result: Listing block with nowrap option applied

public class ApplicationConfigurationProvider extends HttpConfigurationProvider
{
   @Override
   public Configuration getConfiguration(ServletContext context)
   {
      return ConfigurationBuilder.begin()
               .addRule()
               .when(Direction.isInbound().and(Path.matches("/{path}")))
               .perform(Log.message(Level.INFO, "Client requested path: {path}"))
               .where("path").matches(".*");
   }
}

To prevent lines from wrapping globally, unset the prewrap attribute on the document.

Disable prewrap globally (thus, enabling nowrap)

:prewrap!:

When the prewrap attribute is unset, the nowrap class is added to any <pre> elements.

Now, you can use the line wrapping strategy that works best for you and your readers.
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Chapter 40. Passthroughs
The passthrough is the primary mechanism by which to escape content in AsciiDoc (far more
comprehensive and consistent than using a backslash). As the name implies, a passthrough passes
content directly through to the output document without applying any substitutions. When using
the passthrough block or macro, it’s possible to specify a custom set of substitutions to be applied
before the content is reintroduced. Other forms of passthroughs, such as the single and double plus,
apply substitutions strictly for compliance with the output format.



Using passthroughs to pass content (without substitutions) can couple your
content to a specific output format, such as HTML. In these cases, you should use
conditional preprocessor directives to route passthrough content for different
output formats based on the current backend.

40.1. Passthrough Macros
Asciidoctor supports several forms of the passthrough macro.

inline pass macro

An inline macro named pass that can be used to passthrough content. Supports an optional set of
substitutions.

pass:[content like #{variable} passed directly to the output] followed by normal
content.

content with only select substitutions applied: pass:c,a[__<{email}>__]

single and double plus

A special syntax for preventing text from being formatted. Only escapes special characters for
compliance with the output format and doesn’t support explicit substitutions.

triple plus

A special syntax for designating passthrough content. Does not apply any substitutions
(equivalent to the inline pass macro) and doesn’t support explicit substitutions.

double dollar (deprecated)

A deprecated special syntax for designating passthrough content. Like the triple plus, does not
apply any substitutions and doesn’t support explicit substitutions.


Asciidoctor does not implement the block pass macro. Instead, you should use a
pass block.

40.1.1. Inline pass macro and explicit substitutions

To exclude a phrase from substitutions and disable escaping of special characters, enclose it in the
inline pass macro. For example, here’s one way to format text as underline when generating HTML
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from AsciiDoc:

The text pass:[<u>underline me</u>] is underlined.

The text <u>underline me</u> is underlined.

If you want to enable ad-hoc quotes substitution, then assign the macros value to subs and use the
inline pass macro.

[subs=+macros] ①
----
I better not contain *bold* or _italic_ text.
pass:quotes[But I should contain *bold* text.] ②
----

① macros is assigned to subs, which allows any macros within the block to be processed.

② The pass macro is assigned the quotes value. Text within the square brackets will be formatted.

The inline pass macro does introduce additional markup into the source code that could make it
invalid in raw form. However, the output it produces will be valid when viewed in a viewer (HTML,
PDF, etc.).

I better not contain *bold* or _italic_ text.
But I should contain <strong>bold</strong> text.

The inline pass macro also accepts shorthand values for specifying substitutions.

• c = special characters

• q = quotes

• a = attributes

• r = replacements

• m = macros

• p = post replacements

For example, the quotes text substitution value is assigned in the inline passthrough macro below:

The text pass:q[<u>underline *me*</u>] is underlined and the word "`me`" is bold.
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The text <u>underline <strong>me</strong></u> is underlined and the word
&#8220;me&#8221; is bold.

40.1.2. Triple plus passthrough

The triple-plus passthrough works much the same way as the pass macro. To exclude content from
substitutions, enclose it in triple pluses (+++).

+++content passed directly to the output+++ followed by normal content.

The triple-plus macro is often used to output custom HTML or XML.

The text +++<u>underline me</u>+++ is underlined.

The text <u>underline me</u> is underlined.

40.1.3. Nesting blocks and passthrough macros

When you’re using passthroughs inside literal and listing blocks, it can be easy to forget that the
triple-plus, double-dollar, and backtick passthroughs are macros (not quotes). If you want to enable
the passthroughs, make sure to assign the macros value to the subs attribute.

[source,java,subs="+quotes,+macros"]
----
protected void configure(HttpSecurity http) throws Exception {
    http
        .authorizeRequests()
            **.antMatchers("/resources/$$**$$").permitAll()**
            .anyRequest().authenticated()
            .and()
        .formLogin()
            .loginPage("/login")
            .permitAll();
----
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protected void configure(HttpSecurity http) throws Exception {
    http
        .authorizeRequests()
            <strong>.antMatchers("/resources/**").permitAll()</strong>
            .anyRequest().authenticated()
            .and()
        .formLogin()
            .loginPage("/login")
            .permitAll();

40.2. Passthrough Blocks
The passthrough block and pass block style exclude block content from all substitutions (unless
specified otherwise).

A passthrough block is delimited by four plus signs (++++). The pass style is implied.

++++
<video poster="images/movie-reel.png">
  <source src="videos/writing-zen.webm" type="video/webm">
</video>
++++

(Keep in mind that AsciiDoc has a video macro, so this example is merely for demonstration.
However, a passthrough could come in handy if you need to output more sophisticated markup
than what the built-in HTML converter produces).

The pass style can also be set on a paragraph or an open block.

[pass]
<u>underline me</u> is underlined.

You can use the subs attribute to specify a comma-separated list of substitutions. These substitutions
will be applied to the content prior to it being reintroduced to the output document.

[subs=attributes]
++++
{name}
image:tiger.png[]
++++

The content of the pass block does not get wrapped in a paragraph. Therefore, you can use the pass
style in combination with the normal substitution category to output content without generating a
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paragraph.

[subs=normal]
++++
Normal content which is not enclosed in a paragraph.
++++
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Chapter 41. Open Blocks
The most versatile block of all is the open block.

Open block syntax

--
An open block can be an anonymous container,
or it can masquerade as any other block.
--

Result: Open block

An open block can be an anonymous container, or it can masquerade as any other block.

An open block can act as any other block, with the exception of pass and table. Here’s an example of
an open block acting as a sidebar.

Open block masquerading as a sidebar syntax

[sidebar]
.Related information
--
This is aside text.

It is used to present information related to the main content.
--

Result: Open block masquerading as a sidebar

Related information

This is aside text.

It is used to present information related to the main content.

This is an open block acting as a source block.

Open block masquerading as a source block syntax

[source]
--
puts "I'm a source block!"
--
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Result: Open block masquerading as a source block

puts "I'm a source block!"
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Enriching Your Content

232



Chapter 42. Equations and Formulas
If you need to get technical in your writing, Asciidoctor integrates with MathJax. MathJax is the
standard library for displaying Science, Technology, Engineering and Math (STEM) expressions in
the browser.

Thanks to MathJax JavaScript library, Asciidoctor supports both AsciiMathML and TeX and LaTeX
math notation in the same document.
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Chapter 43. Activating stem support
To activate equation and formula support, simply set the stem attribute in the document’s header
(or by passing the attribute to the command line or API).

Setting the stem attribute

= My Diabolical Mathmatical Opus
Jamie Moriarty
:stem: ①

① The default interpreter value, asciimath, is assigned implicitly.

By default, Asciidoctor’s stem support assumes all equations are AsciiMath if not specified
explicitly. If you want to use the LaTeX interpreter by default, assign latexmath to the stem attribute.

The html backend will just use mathjax client-side to render math notation, whereas the docbook
backend will use it to convert math to mathml.

Assigning an alternative interpreter to the stem attribute

= My Diabolical Mathmatical Opus
Jamie Moriarty
:stem: latexmath



You can still use both interpreters in the same document. The value of the stem
attribute merely sets the default interpreter. To set the interpreter explicitly for a
given block or inline span, just use asciimath or latexmath in place of stem as
explained in Using Multiple Stem Interpreters.

Stem content can be displayed inline with other content or as discrete blocks. No substitutions are
applied to the content within a stem macro or block.

43.1. Inline Stem Content
The best way to mark up an inline formula is to use the stem macro.

Inline stem macro syntax

stem:[sqrt(4) = 2] ① ②

Water (stem:[H_2O]) is a critical component.

① The inline stem macro contains only one colon (:).

② Place the content you want interpreted within the square brackets ([]) of the macro.
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Rendered inline stem content

sqrt(4) = 2

Water (H_2O) is a critical component.

If the inline stem equation contains a right square bracket, you must escape this character using a
backslash.

Inline stem macro with a right square bracket

A matrix can be written as stem:[[[a,b\],[c,d\]\]((n),(k))].

Rendered inline stem macro with a right square bracket

A matrix can be written as [[a,b],[c,d]]((n),(k)).

A stem macro is an implicit passthrough macro. That’s why, despite the fact that the x expression
matches the syntax of an attribute reference, you don’t have to escape it.

43.2. Block Stem Content
Block formulas are marked up by assigning the stem style to a delimited passthrough block.

Delimited stem block syntax

[stem] ①
++++ ②
sqrt(4) = 2
++++

① Assign the stem style to the passthrough block.

② A passthrough block is delimited by a line of four consecutive plus signs (++++).

The result is rendered beautifully in the browser thanks to MathJax!

Rendered delimited stem block

sqrt(4) = 2


You don’t need to add special delimiters around the expression as the MathJax
documentation suggests. Asciidoctor handles that for you automatically!
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43.3. Using Multiple Stem Interpreters
You can use multiple interpreters for stem content within the same document by using the
interpreter’s name instead of the default stem name.

For example, if you want LaTeXMath to interpret an inline equation, name the macro latexmath.

Inline latexmath macro syntax

latexmath:[C = \alpha + \beta Y^{\gamma} + \epsilon]

Rendered latexmath content

C = \alpha + \beta Y^{\gamma} + \epsilon

The name that maps to the interpreter you want to use can also be applied to block stem content.

Delimited asciimath block syntax

= My Diabolical Mathmatical Opus
Jamie Moriarty
:stem: latexmath

[asciimath]
++++
sqrt(4) = 2
++++

43.4. Enabling STEM expressions in the DocBook
Toolchain
When converting to HTML, Asciidoctor relies on MathJax to parse and render the STEM expressions
in the browser. We can’t rely on MathJax when converting to DocBook, so Asciidoctor must
explicitly convert the expressions into something the DocBook toolchain can understand. Enter the
asciimath gem.

The asciimath gem converts AsciiMath expressions to MathML. The DocBook converter uses this
functionality if the gem is available. Thus, to enable AsciiMath support when converting to
DocBook, you need to install the asciimath gem:

$ gem install asciimath

For full functionality, you’ll also need at least Asciidoctor version 1.5.4.

The asciimath gem converts AsciiMath to MathML. If you’re generating a PDF from the DocBook,
the MathML needs to be interpreted and drawn into the PDF. In the DocBook FOP pipeline, this is
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handled by JEuclid.

Fortunately, fopub is already configured to use the JEuclid integration. When fopub generates the
PDF, the JEuclid FOP plugin processes any MathML found in the DocBook file, including the
expressions transformed from AsciiMath to MathML by the asciimath gem. As a result, AsciiMath
stem expressions in the AsciiDoc file will render as expected in the generated PDF.

There’s no equivalent gem for converting STEM expressions written in LaTeX to MathML. Instead,
you can convert the DocBook to PDF using the dblatex pipeline, which obviously supports LaTeX
expressions.
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Chapter 44. User Interface Macros
We are looking for feedback on these macros before setting them in stone. If you have suggestions,
we want to hear from you!

 You must set the experimental attribute to enable the UI macros.

44.1. Keyboard shortcuts
Asciidoctor recognizes a macro for creating keyboard shortcuts using the syntax kbd:[key(+key)*].

Keyboard macro syntax

|===
|Shortcut |Purpose

|kbd:[F11]
|Toggle fullscreen

|kbd:[Ctrl+T]
|Open a new tab

|kbd:[Ctrl+Shift+N]
|New incognito window

|kbd:[\ ]
|Used to escape characters

|kbd:[Ctrl+\]]
|Jump to keyword

|kbd:[Ctrl + +]
|Increase zoom
|===

Result: Keyboard macros displaying common
browser keyboard shortcuts

Shortcut Purpose

F11 Toggle fullscreen

Ctrl  +  T Open a new tab

Ctrl  +  Shift  +  N New incognito window

\ Used to escape
characters

Ctrl  +  ] Jump to keyword

Ctrl  +  + Increase zoom
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You no longer have to struggle to explain to users what keys they are supposed to press.

44.2. Menu selections
Trying to explain to someone how to select a menu item can be a pain. With the menu macro, the
symbols do the work.

Menu macro syntax

To save the file, select menu:File[Save].

Select menu:View[Zoom > Reset] to reset the zoom level to the default setting.

The instructions in the example above appear below.

Result: Menu macros displaying menu selections

To save the file, select File › Save.

Select View › Zoom › Reset to reset the zoom level to the default setting.

44.3. UI buttons
It can be equally difficult to communicate to the reader that they need to press a button. They can’t
tell if you are saying “OK” or they are supposed to look for a button labeled OK. It’s all about getting
the semantics right. The btn macro to the rescue!

Button macro syntax

Press the btn:[OK] button when you are finished.

Select a file in the file navigator and click btn:[Open].

Result: Button macros displaying UI buttons

Press the [ OK ] button when you are finished.

Select a file in the file navigator and click [ Open ].
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Chapter 45. Icons
Icons are used for admonition labels, callout numbers and inline symbols. Asciidoctor provides
three strategies for display icons: as text, as images or as a characters selected from an icon font.
The strategy is controlled using the icons attribute. The default behavior is to display the fallback
text.

If you want icons to display using images, set the icons attribute to an empty value in the document
header. This strategy is recommended if you are converting to DocBook or you want an easy way to
make HTML for viewing offline. The DocBook toolchain provides images for the admonition and
callout icons, which you can replace with your own custom icons. If you use the inline icon macro,
you’ll need to provide the images for those icons.

Alternatively, you can have Asciidoctor “draw” icons using the Font Awesome font-based icon set.
To use this feature, set the value of the icons document attribute to font in the document header.
You can see the available icons on the icons page. Using Font Awesome provides many more
images, but requires online access by default.


The default CSS stylesheet (or any stylesheet produced by the Asciidoctor
stylesheet factory) is required when using font-based icons.

45.1. Admonition Icons
When font-based icons are enabled, Asciidoctor will draw the icons for the 5 built-in admonition
types using Font Awesome.

Here’s an example that shows how to enable font-based icons, starting with the AsciiDoc source:

Set icons attribute to font in the document header

= Document Title
:icons: font

NOTE: Asciidoctor supports font-based admonition icons, powered by Font Awesome!

Asciidoctor will then emit HTML markup that selects an appropriate font character from the Font
Awesome font for each admonition block:
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Result: HTML output when the icons attribute is set to font

<div class="admonitionblock note">
<table>
<tr>
<td class="icon">
<i class="fa icon-note" title="Note"></i>
</td>
<td class="content">
Asciidoctor supports font-based admonition icons, powered by Font Awesome!
</td>
</tr>
</table>
</div>

This is how the admonition looks rendered.

Result: Admonition block label is displayed as an icon when the icons attribute is set


Asciidoctor supports font-based admonition icons, powered by Font
Awesome!

Asciidoctor adds a reference to the Font Awesome stylesheet and font files served from a CDN to the
document header:

<link rel="stylesheet"
  href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-
awesome.min.css">

The icons chosen are selected by the stylesheet. The default stylesheet maps icons to the following 5
CSS classes:

• .admonitionblock td.icon .icon-note

• .admonitionblock td.icon .icon-tip

• .admonitionblock td.icon .icon-warning

• .admonitionblock td.icon .icon-caution

• .admonitionblock td.icon .icon-important

If you want to customize the icon or the color that is used, you’ll need to provide a custom
stylesheet or override the styles using a docinfo file. Here’s an example that shows how to change
the icon for the note admonition to sticky note:
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.admonitionblock td.icon .icon-note::before {
  content: "\f24a";
  color:black;
}

45.1.1. Unicode Admonition Icons

Instead of image or font-based icons, it’s possible to use Unicode glyphs for admonition icons by
applying a little trick.

If the icons attribute is not set on the document, Asciidoctor outputs a textual label that identifies
the admonition type. The text for this label comes from an AsciiDoc attribute. The name of the
attribute is <type>-caption, where <type> is the admonition type in lowercase. For example, the
attribute for a tip admonition is tip-caption.

Instead of a word, you can assign a Unicode glyph to this attribute:

:tip-caption: Ὂ�

[TIP]
It's possible to use Unicode glyphs as admonition icons.

Here’s the HTML that Asciidoctor outputs for the icon cell:

<td class="icon">
<div class="title">Ὂ�</div>
</td>

Instead of entering the glyph directly, you can enter a character reference instead. However, since
you’re defining the character reference in an attribute entry, you (currently) have to disable
substitutions on the value.

:tip-caption: pass:[&#128161;]

[TIP]
It's possible to use Unicode glyphs as admonition icons.

On GitHub, the HTML output that Asciidoctor emits is run through a postprocessing filter that
substitutes emoji shortcodes with emoji symbols. That means you can use these shortcodes in the
value of the attribute:
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ifdef::env-github[]
:tip-caption: :bulb:
endif::[]

[TIP]
It's possible to use emojis as admonition icons on GitHub.

When the document is processed through the GitHub interface, the shortcodes get replaced with
real emojis. This is the only known way to get admonition icons to work on GitHub. Give it a try!

45.2. Inline Icons
An icon can be inserted at an arbitrary place in paragraph content with an inline macro.

Here’s an example that inserts the Font Awesome tags icon in front of a list of tag names.

Inline icon macro syntax

icon:tags[] ruby, asciidoctor

Here’s how the HTML converter converts the above syntax when the icons attribute is assigned the
font value.

Result: HTML output

<div class="paragraph">
<p><span class="icon"><i class="fa fa-tags"></i></span> ruby, asciidoctor</p>
</div>

More importantly, here’s how it looks!

Result: Inline icon macro

 ruby, asciidoctor

You can even give the icon color by assigning it a role.

Inline icon macro and role syntax

icon:tags[role="blue"] ruby, asciidoctor

Result: Inline icon macro and role

 ruby, asciidoctor

If you aren’t using font-based icons, Asciidoctor looks for icon images on disk, in the iconsdir,
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naturally. Here’s how the HTML converter converts an icon macro when the icons attribute is not
set or empty.

Result: HTML output

<div class="paragraph">
<p><span class="image"><img src="./images/icons/tags.png" alt="tags"></span> ruby,
asciidoctor</p>
</div>

Here’s how the DocBook converter converts to icon macro. DocBook does not support font-based
icons, so the DocBook output is not affected by the value of the icons attribute.

Result: DocBook output

<inlinemediaobject>
  <imageobject>
    <imagedata fileref="./images/icons/tags.png"/>
  </imageobject>
  <textobject><phrase>tags</phrase></textobject>
</inlinemediaobject> ruby, asciidoctor

Relationship to the inline image macro

The inline icon macro is similar to the inline image macro with a few exceptions:

• If the icons attribute has the value font, the macro will translate to a font-based icon in the
HTML converter (e.g., <i class="icon-tags"></i>)

• If the icons attribute does not have the value font, or the converter is DocBook, the macro will
insert an image into the document that resolves to a file in the iconsdir directory (e.g., <img
src="./images/icons/tags.png">)

The file resolution strategy when using image-based icons is the same used to locate images for the
admonition icons. The file extension is set using the icontype attribute, which defaults to PNG (png).

45.2.1. Size, Rotate, and Flip

The icon macro has a few attributes that can be used to modify the size and orientation of the icon.
At the moment, these are specific to Font Awesome and therefore only apply to HTML output when
icon fonts are enabled.

size

First positional attribute; scales the icon; values: 1x (default), 2x, 3x, 4x, 5x, lg, fw

rotate

Rotates the icon; values: 90, 180, 270

flip

Flips the icon; values: horizontal, vertical
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The first unnamed attribute is assumed to be the size. For instance, to make the icon twice the size
as the default, simply add 2x inside the square brackets.

icon:heart[2x]

This is equivalent to:

icon:heart[size=2x]

And this is how the  displays.

The previous example emits the following HTML:

<span class="icon"><i class="fa fa-heart fa-2x"></i></span>



If you want to line up icons so that you can use them as bullets in a list, use the fw
size as follows:

[%hardbreaks]
icon:bolt[fw] bolt
icon:heart[fw] heart

To rotate and flip the icon, specify these options using attributes:

icon:shield[rotate=90, flip=vertical]

The  looks like this.

The previous example emits the following HTML:

<span class="icon"><i class="fa-shield fa-rotate-90 fa-flip-vertical"></i></span>

45.2.2. Link and Window

Like an inline image, it’s possible to add additional metadata to an inline icon.

Below are the possible attributes that apply to both font-based and image-based icons:

link

The URI target used for the icon, which will wrap the converted icon in a link
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window

The target window of the link (when the link attribute is specified) (HTML converter)

Here’s an example of an icon with a link:

icon:download[link="https://rubygems.org/downloads/asciidoctor-1.5.2.gem"]

The previous example emits the following HTML:

<span class="icon"><a class="image" href="https://rubygems.org/downloads/asciidoctor-
1.5.2.gem"><i class="fa-download"></i></a></span>

45.2.3. Image Icon Attributes

Below are the possible attributes that apply in the case that font-based icons are not in use:

alt

The alternative text on the <img> tag (HTML backend) or text for <inlinemediaobject> (DocBook
converter)

width

The width applied to the image

height

The height applied to the image

title

The title of the image displayed when the mouse hovers over it (HTML converter)

role

The role applied to the element that surrounds the icon

Currently, the inline icon macro doesn’t support any options to change its physical position (such as
alignment left or right).

45.3. Favicon
When using Asciidoctor to generate a standalone HTML document (i.e., the header_footer option is
true), you can instruct the processor to include a link to a favicon by setting the favicon attribute in
the document header.

= Document Title
:favicon:

By default, the processor will add a link reference of type "icon" that refers to a file named
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favicon.ico (relative to the HTML document):

<link rel="icon" type="image/x-icon" href="favicon.ico">

This reference gets added inside the HTML <head> tag (which explains why this feature is not
available when generating an embeddable HTML document).

To modify the name or location of the icon file, simply assign a value to the favicon attribute:

= Document Title
:favicon: ./images/favicon/favicon.png

This will now produce the following HTML tag:

<link rel="icon" type="image/png" href="./images/favicon/favicon.png">

Notice the mimetype is automatically set based on the file extension of the image.

The value of the iconsdir attribute is not prepend to the favicon path as it is with icons in the
content. If you want this directory to be included in the favicon path, you must reference it
explicitly:

:favicon: {iconsdir}/favicon.png


If you’re converting a set of AsciiDoc files in multiple directories for the purpose of
making a website, and the favicon is located in a shared location, you’ll likely want
to use a forward slash (/) at the beginning of the favicon path.

If you’re looking for more control over how the favicon is declared, you should use a head docinfo
file. Keep in mind that if you add an icon link in a head docinfo file and also set the favicon
attribute, you’ll end up with two icon links in the generated HTML document.
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Chapter 46. Syntax Highlighting Source Code
Developers are accustomed to seeing source code colorized to emphasize the code’s structure (i.e.,
keywords, types, delimiters, etc.). This technique is known as syntax highlighting. Since this
technique is so prevalent—one could say expected—Asciidoctor integrates a wealth of libraries to
syntax highlight the source code blocks in your document. The list of integrated libraries includes
Rouge, CodeRay, Pygments, highlight.js, and prettify.

46.1. Enabling Source Highlighting
When enabled, syntax highlighting gets applied to listing or literal blocks that have the source block
style and a source language. However, syntax highlighting is not enabled by default.

To enable syntax highlighting in a document, you must set the source-highlighter document
attribute. You can set this attribute in the document or from the CLI or API.

If you set the attribute in the document, it must be defined in the document header.

= Document Title
:source-highlighter: <value>

For example, here’s how to enable syntax highlighting using Rouge:

= Document Title
:source-highlighter: rouge

Source Highlighter vs. Syntax Highlighter

You might notice that the source-highlighter attribute uses the term “source highlighter”,
whereas the library that performs the highlighting is referred to as a “syntax highlighter”.
What’s the difference?

• The generally accepted term for a syntax (aka code) highlighter is “syntax highlighter”.

• The syntax highlighter is applied to source blocks in AsciiDoc, hence why we say “source
highlighter”.

In other words, the source-highlighter attribute means “use this syntax highlighter to
colorize source blocks”.

46.2. Available Source Highlighters
The following table lists the recognized values for the source-highlighter attribute.

Recognized values and supported environments for the source-highlighter attribute
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Library Name Attribute Value Supported Environments

CodeRay coderay Asciidoctor, AsciidoctorJ, Asciidoctor PDF

highlight.js highlightjs Asciidoctor, AsciidoctorJ, Asciidoctor.js

prettify prettify Asciidoctor, AsciidoctorJ, Asciidoctor.js

Pygments pygments Asciidoctor, Asciidoctor PDF

Rouge rouge Asciidoctor, Asciidoctor PDF



To use Rouge, CodeRay, or Pygments, you must have the appropriate library
installed on your system. See the Rouge, CodeRay, or Pygments section to find
installation instructions.

On the other hand, if you’re using a client-side syntax highlighting library like
highlight.js or prettify, there’s no need to install additional libraries. The generated
HTML will load the required source files from a CDN (or custom URL or file path).

46.3. Applying Source Highlighting
To apply highlighting to source code, you must add the source block style to a listing block, literal
block, or paragraph and also specify a source language.

Code block with title and syntax highlighting

.app.rb ①
[#src-listing] ②
[source,ruby] ③ ④
---- ⑤
require 'sinatra'

get '/hi' do
  "Hello World!"
end
----

① An optional title can be added to the block.

② An optional ID can be added to the block. See Defining an Anchor.

③ Assign the block name source to the first position in the attribute list.

④ Assign a source language to the second position.

⑤ The source block name is typically assigned to listing and literal blocks.
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Result: Source block with title and syntax highlighting

app.rb

require 'sinatra'

get '/hi' do
  "Hello World!"
end

Source paragraph

[source,xml] ①
<meta name="viewport"
  content="width=device-width, initial-scale=1.0">

This is normal content.  ②

① Place the attribute list directly on the paragraph.

② Once an empty line is encountered the syntax highlighting is unset.

Result: Source paragraph

<meta name="viewport"
  content="width=device-width, initial-scale=1.0">

This is normal content.

If the majority of your source blocks use the same source language, you can set the source-language
attribute in the document header and assign a language to it.
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Source language attribute

:source-highlighter: pygments
:source-language: java

[source]
----
public void setAttributes(Attributes attributes) {
    this.options.put(ATTRIBUTES, attributes.map());
}
----

You can override the global source language by specifying a source language on the
block.

[source,ruby]
require 'sinatra'

Additionally, you can use an include directive to insert source code into an AsciiDoc document
directly from a file.

Code block inserted from another file

[source,ruby]
----
include::app.rb[]
----



If you specify custom substitutions on the source block using the subs attribute,
make sure to include the specialcharacters substitution if you want to preserve
syntax highlighting. However, if you do plan to modify the substitutions, we
recommend using incremental substitutions instead.
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Highlighting PHP source code

The PHP language has two modes. It can either be used as a standalone language (pure mode)
or it can be mixed with HTML (mixed mode) by putting it inside PHP tags (a form that
resembles an XML processing instruction). This presents some challenges for the syntax
highlighter.

If the code in the source block is pure PHP, you should use the language tag php. For example:

[source,php]
----
echo "Hello, World!";
----

If the PHP source is mixed with HTML, you should either use the language tag html+php, as
shown here:

[source,html+php]
----
<p>
<?php echo "Hello, World!"; ?>
</p>
----

Or you could use the language tag php and set the mixed option on the source block, as shown
here:

[source%mixed,php]
----
<p>
<?php echo "Hello, World!"; ?>
</p>
----

Under the covers, the syntax highlighter is configured to assume an implicit start PHP tag is
present when the language tag is php. Both the mixed option and the language tag html+php
disable this setting.

46.4. Rouge
Rouge is an elegant, extendable code highlighter written in pure Ruby that supports a vast array of
languages.

In order to use Rouge with Asciidoctor, you need the rouge RubyGem. You can use one of the
following methods to install Rouge.
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Install using gem (all systems)

$ gem install rouge

Install using apt-get (Debian-based systems)

$ sudo apt-get install rouge

Install using dnf (Fedora-based systems)

$ sudo dnf install rubygem-rouge

Once you’ve installed the RubyGem, assign the rouge value to the source-highlighter attribute in the
document header to activate it.

:source-highlighter: rouge

You can further customize the source block output with additional Rouge attributes.

rouge-css

Controls what method is used for applying CSS to the tokens. Can be class or style. Default:
class.

rouge-linenums-mode (not currently implemented)

Controls how line numbers are laid out. Can be table or inline. If line wrapping is enabled on
preformatted blocks (i.e., prewrap), and you want to use line numbering on source blocks, you
must set the value of this attribute to inline in order for the numbers to line up properly with
their target lines. Default: table.

rouge-style

Controls the color theme used to for highlighting. You can find the list of themes in the Rouge
code repository.
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Customizing a source block with Rouge line numbers

:source-highlighter: rouge

[source,ruby,linenums]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I'
   #'lowergreek' => 'a'
   #'arabic'     => '1'
   #'decimal'    => '1'
}
----

46.4.1. Highlight Select Lines

Not to be confused with syntax highlighting, you can configure Rouge to highlight (i.e., emphasize)
select lines in order to call attention to them.

The highlight attribute accepts a comma or semi-colon delimited list of line ranges. A line range is
represented by two numbers separated by a double period (e.g., 2..5). These numbers correspond
to the line numbers of the source block, inclusive, where the first line is 1. This feature is activated
on a source block if the highlight attribute is defined and at least one of the line numbers falls in
this range.

Highlight select lines in a source block

:source-highlighter: rouge
:docinfo: private

[source,ruby,linenums,highlight=2..5]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I',
}
----

You will need to give it some help using extra CSS provided by the following docinfo file:
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Docinfo file to support line highlighting with Rouge

<style>
pre.rouge .hll {
  background-color: #ffc;
}
pre.rouge .hll * {
  background-color: initial;
}
</style>

46.5. Pygments
Pygments is a popular syntax highlighter that supports a broad range of programming, template
and markup languages.

In order to use Pygments with Asciidoctor, you need Python 2 and the pygments.rb gem.


You do not need to install Pygments itself. It comes bundled with the pygments.rb
gem.



You must have Python 2 installed to use pygments.rb. Python 3 is not compatible
with the pygments.rb gem. Check that you have a python2 (Linux), python (macOS),
or py -2 (Windows) executable on your PATH. (On macOS, verify that the python
executable uses Python 2 by running python -V).

Installing Python and the pygments.rb gem via the CLI (cross platform)

$ "`\which apt-get || \which dnf || \which yum || \which brew`" install python ①
$ gem install pygments.rb ②

① Install Python using your package manager

② Install the pygments.rb gem

Once you’ve installed these libraries, assign pygments to the source-highlighter attribute in your
document’s header.

:source-highlighter: pygments

You can further customize the source block output with additional Pygments attributes.

pygments-style

Sets the name of the color theme Pygments uses. To see the list of available style names, see
Available Pygments style names. Default: pastie.
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pygments-css

Controls what method is used for applying CSS to the tokens. Can be class (CSS classes) or style
(inline styles). See Pygments stylesheet to learn more about how the value class is handled.
Default: class.

pygments-linenums-mode

Controls how line numbers are arranged when line numbers are enabled on the source block.
Can be table or inline. If line wrapping is enabled on preformatted blocks (i.e., prewrap), and you
want to use line numbering on source blocks, you must set the value of this attribute to inline in
order for the numbers to line up properly with their target lines. Default: table.

Customizing a source block with Pygments attributes

:source-highlighter: pygments
:pygments-style: manni
:pygments-linenums-mode: inline

[source,ruby,linenums]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I'
   #'lowergreek' => 'a'
   #'arabic'     => '1'
   #'decimal'    => '1'
}
----

Result: Source block using inline line numbers and the manni theme

46.5.1. Highlight Select Lines

Not to be confused with syntax highlighting, you can configure Pygments to highlight (i.e.,
emphasize) select lines in order to call attention to them. This feature is activated on a source block
if the highlight attribute is defined.
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The highlight attribute accepts a comma or semi-colon delimited list of line ranges. A line range is
represented by two numbers separated by a double period (e.g., 2..5). These numbers correspond
to the line numbers of the source block, inclusive, where the first line is 1.

Highlight select lines in a source block

:source-highlighter: pygments

[source,ruby,highlight=2..5]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I',
}
----

46.5.2. Available Pygments style names

To list the available Pygments styles, run the following command in a terminal:

$ $(dirname $(gem which pygments.rb))/../vendor/pygments-main/pygmentize -L styles

The pygments.rb gem uses a bundled version of Pygments (often ahead of the latest release). This
command ensures that you are invoking the pygmentize command from the Pygments used by that
gem.

46.5.3. Using a custom Pygments installation

If you already have Pygments installed on your system, you want to use your own fork, or you want
to customize how Pygments is configured, you can get Asciidoctor to use a custom version of
Pygments instead of the one bundled with the pygments.rb gem.

First, install your own version of Pygments. You can do this, for instance, by cloning the upstream
Pygments repository:

$ hg clone https://bitbucket.org/birkenfeld/pygments-main pygments

Find the directory that contains the file pygmentize or the Makefile. That’s your Pygments
installation path. Make note of it.

Next, create a script to run before invoking Asciidoctor for the first time. Let’s call it
pygments_init.rb. Populate the script with the following content:
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pygments_init.rb

require 'pygments'

# use a custom Pygments installation (directory that contains pygmentize)
Pygments.start '/path/to/pygments'

# example of registering a missing or additional lexer
#Pygments::Lexer.create name: 'Turtle', aliases: ['turtle'],
#    filenames: ['*.ttl'], mimetypes: ['text/turtle', 'application/x-turtle']


You could enhance this script to read the Pygments installation path from an
environment variable (or configuration file).

Now just require this script before your invoke Asciidoctor the first time. When using the
asciidoctor command, pass the script using the -r flag:

$ asciidoctor -r ./pygments_init.rb document.adoc

When using the Asciidoctor API, require the script using require or require_relative:

require 'asciidoctor'
require_relative './pygments_init.rb'

Asciidoctor.convert_file 'document.adoc', safe: :safe

Now Asciidoctor is using your custom installation of Pygments instead of the one bundled with the
pygments.rb gem.

46.6. CodeRay
CodeRay is an encoding-aware, syntax highlighter that supports the languages listed below.

C C++ Clojure

CSS Delphi diff

ERB Go Groovy

HAML HTML Java

JavaScript JSON Lua

PHP Python Ruby

Sass SQL Taskpaper

XML YAML

In order to use CodeRay with Asciidoctor, you need the coderay RubyGem. You can use one of the
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following methods to install CodeRay.

Install using gem (all systems)

$ gem install coderay

Install using apt-get (Debian-based systems)

$ sudo apt-get install coderay

Install using dnf (Fedora-based systems)

$ sudo dnf install rubygem-coderay

Once you’ve installed the RubyGem, assign the coderay value to the source-highlighter attribute in
the document header to activate it.

:source-highlighter: coderay

You can further customize the source block output with additional CodeRay attributes.

coderay-css

Controls what method is used for applying CSS to the tokens. Can be class or style. Default:
class.

coderay-linenums-mode

Controls how line numbers are laid out. Can be table or inline. If line wrapping is enabled on
preformatted blocks (i.e., prewrap), and you want to use line numbering on source blocks, you
must set the value of this attribute to inline in order for the numbers to line up properly with
their target lines. Default: table.
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Customizing a source block with CodeRay line numbers

:source-highlighter: coderay
:coderay-linenums-mode: inline

[source,ruby,linenums]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I'
   #'lowergreek' => 'a'
   #'arabic'     => '1'
   #'decimal'    => '1'
}
----

See the CodeRay stylesheet section to learn about the coderay-css attribute.

46.6.1. Highlight Select Lines

Not to be confused with syntax highlighting, you can configure CodeRay to highlight (i.e.,
emphasize) select lines in order to call attention to them. This feature is activated on a source block
if the following conditions are met:

• Line numbering is enabled (i.e., the linenums option). (In CodeRay, the highlight feature is
coupled with line numbering).

• The highlight attribute is defined.

The highlight attribute accepts a comma or semi-colon delimited list of line ranges. A line range is
represented by two numbers separated by a double period (e.g., 2..5). These numbers correspond
to the line numbers of the source block, inclusive, where the first line is 1.

Highlight select lines in a source block

:source-highlighter: coderay

[source,ruby,linenums,highlight=2..5]
----
ORDERED_LIST_KEYWORDS = {
  'loweralpha' => 'a',
  'lowerroman' => 'i',
  'upperalpha' => 'A',
  'upperroman' => 'I',
}
----
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46.7. highlight.js
Highlight.js is a popular client-side syntax highlighter that supports a broad range of languages.

To use highlight.js, simply add the following attribute entry to the header of your AsciiDoc file:

:source-highlighter: highlightjs

By default, Asciidoctor will link to the highlight.js library and stylesheet hosted on cdnjs.

The version of the highlight.js library hosted on cdnjs only includes the basic language bundle. To
enable support for a wider range of languages (or to use a different version), follow these steps:

1. Create your custom bundle on the download page.

2. Download and unpack the zip into a folder called highlight adjacent to your AsciiDoc file (or in
the output directory, if different)

3. Rename highlight/highlight.pack.js to highlight/highlight.min.js

4. Rename highlight/styles/github.css to highlight/styles/github.min.css

◦ Replace github with the name of the highlightjs-theme you are using, if different.

5. Add the attribute entry :highlightjsdir: highlight to the header of your AsciiDoc file.

◦ Alternatively, you can pass the -a highlightjsdir=highlight flag when invoking the
Asciidoctor CLI.

The output file will use your personal copy of the highlight.js library and stylesheet instead of the
one hosted on cdnjs.
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Chapter 47. Callouts
Callout numbers (aka callouts) provide a means to add annotations to lines in a verbatim block.

Each callout number used in a verbatim block must appear twice. The first use, which goes within
the verbatim block, marks the line being annotated (i.e., the target). The second use, which goes
below the verbatim block, defines the annotation text. Multiple callout numbers may be used on a
single line.

 The callout number (at the target) must be placed at the end of the line.

Here’s a basic example of a verbatim block that uses callouts:

[source,ruby]
----
require 'sinatra' ①

get '/hi' do ② ③
  "Hello World!"
end
----
<1> Library import
<2> URL mapping
<3> Response block

Here’s how this example gets rendered:

require 'sinatra' ①

get '/hi' do ② ③
  "Hello World!"
end

① Library import

② URL mapping

③ Response block

Since callout number can interfere with the syntax of the code they are annotating, Asciidoctor
provides several features to hide the callout numbers from both the source and the converted
document. The sections that follow detail these features.

47.1. Copy and Paste Friendly Callouts
In versions prior to Asciidoctor 0.1.4, when a reader visiting an HTML page generated by
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Asciidoctor selected source code from a listing that contained callouts and copied it, the callout
numbers would get caught up in the copied text. If the reader pasted that code and tried to run it,
likely the extra characters from the callouts would cause compile or runtime errors.

Asciidoctor uses CSS to prevent callouts from being selected.

On the other side of the coin, you don’t want the callout annotations or CSS messing up your raw
source code either. You can tuck your callouts neatly behind line comments. Asciidoctor will
recognize the line comments characters in front of a callout number, optionally offset by a space,
and remove them when converting the document.

Here are the line comments that are supported:

----
line of code  ①
line of code  ②
line of code  ③
line of code  ④
----
<1> A callout behind a line comment for C-style languages.
<2> A callout behind a line comment for Ruby, Python, Perl, etc.
<3> A callout behind a line comment for Clojure.
<4> A callout behind a line comment for XML or SGML languages like HTML.

Here’s how it looks when rendered:

line of code  ①
line of code  ②
line of code  ③
line of code  ④

① A callout behind a line comment for C-style languages.

② A callout behind a line comment for Ruby, Python, Perl, etc.

③ A callout behind a line comment for Clojure.

④ A callout behind a line comment for XML or SGML languages like HTML.

47.1.1. XML Callouts

XML doesn’t have line comments, so our “tuck the callout behind a line comment” trick doesn’t
work here. To use callouts in XML, you must place the callout’s angled brackets around the XML
comment and callout number.

Here’s how it appears in a listing:
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[source,xml]
----
<section>
  <title>Section Title</title> ①
</section>
----
<1> The section title is required.

Here’s how it looks when rendered:

<section>
  <title>Section Title</title> ①
</section>

① The section title is required.

Notice the comment has been replaced with a circled number that cannot be selected (if not using
font icons it will be rendered differently and selectable). Now both you and the reader can copy and
paste XML source code containing callouts without worrying about errors.

47.2. Callout Icons
The font icons setting also enables callout icons drawn using CSS.

= Document Title
:icons: font ①

NOTE: Asciidoctor now supports font-based admonition icons, powered by Font Awesome!
②

① Activates the font-based icons in the HTML5 backend.

② Admonition block that uses a font-based icon.
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Chapter 48. Conditional Preprocessor
Directives
You can include or exclude lines of text in your document using one of the following conditional
preprocessor directives:

• ifdef

• ifndef

• ifeval

These directives tell the processor whether to include the enclosed content based on certain
conditions. The conditions are based on the presence or value of document attributes.

For example, say you want to include a certain section of content only when converting to HTML.
Conditional preprocessor directives make this possible. You simply check for the presence of the
basebackend-html attribute using an ifdef directive. Details of this example, as well as others, are
described in the following sections.

48.1. Processing
Although a conditional preprocessor directive looks like a block macro, it’s not a macro and
therefore not processed like one. Instead, it’s a preprocessor directive, just like include. It’s
important to understand the distinction.

A preprocessor directive is processed when the lines are read, but before the document structure is
parsed. Therefore, it’s not aware of the surrounding document structure. A preprocessor directive
merely adds lines to the reader or takes lines away. The conditional preprocessor directives
determine which lines to add and which ones to take away based on the condition.

If you don’t want a conditional preprocessor directive to be processed, you must escape it using a
backslash.

\ifdef::just-an-example[]

Escaping the directive is necessary even if it appears in a verbatim block since it’s not aware of the
surrounding document structure.

48.2. ifdef Directive
Content between the ifdef and endif directives gets included if the specified attribute is set:
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ifdef example

ifdef::env-github[]
This content is for GitHub only.
endif::[]

The syntax of the start directive is ifdef::<attribute>[], where <attribute> is the name of an
attribute.

Keep in mind that the content is not limited to a single line. You can have any amount of content
between the ifdef and endif directives.

If you have a large amount of content inside the ifdef directive, you may find it more readable to
use the long-form version of the directive, in which the attribute (aka condition) is referenced again
in the endif directive.

ifdef long-form example

ifdef::env-github[]
This content is for GitHub only.

So much content in this section, I'd get confused reading the source without the
closing `ifdef` directive.

It isn't necessary for short blocks, but if you are conditionally including a section
it may be something worth considering.

Other readers reviewing your docs source code may go cross-eyed when reading your
source docs if you don't.
endif::env-github[]


A great example of long-form conditional formatting is the source of this user
manual! We use it to show and hide entire sections when building individual
content for separate guides.

If you’re only dealing with a single line of text, you can put the content directly inside the square
brackets and drop the endif directive.

ifdef single line example

ifdef::revnumber[This document has a version number of {revnumber}.]

The single-line block above is equivalent to this formal ifdef directive:

ifdef::revnumber[]
This document has a version number of {revnumber}.
endif::[]
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48.3. ifndef Directive
ifndef is the logical opposite of ifdef. Content between ifndef and endif gets included only if the
specified attribute is not set:

ifndef Example

ifndef::env-github[]
This content is not shown on GitHub.
endif::[]

The syntax of the start directive is ifndef::<attribute>[], where <attribute> is the name of an
attribute.

The ifndef directive supports the same single-line and long-form variants as ifdef.

48.4. Checking multiple attributes (ifdef and ifndef
only)
Both the ifdef and ifndef directives accept multiple attribute names. The combinator can be “and”
or “or”.

Any attribute (or)

Multiple comma-separated (,) directive names evaluate to true, allowing the content to be
included, if one or more of the directives is defined. Otherwise the content is not included.

Any attribute example

ifdef::backend-html5,backend-docbook5[Only shown when converting to HTML5 or
DocBook 5.]

All attributes (and)

Multiple plus-separated (+) directive names evaluate to true, allowing the content to be included,
if all of the directives are defined. Otherwise the content is not included.

All attributes example

ifdef::env-github+backend-html5[Only shown when converting to HTML5 on GitHub.]

The ifndef directive negates the results of the expression.
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Starting in Asciidoctor 1.5.6, the operator logic in the ifndef directive changed to
align with the behavior of AsciiDoc Python. Specifically, when attributes are
separated by commas, content is only included if none of the attributes are
defined. When attributes are separated by pluses, content is included if at least one
of the attributes is undefined. See issue #1983 to find the discussion about this
behavior and the rationale for the change.

48.5. ifeval directive
Content between ifeval and endif gets included if the expression inside the square brackets
evaluates to true.

ifeval example

ifeval::[{sectnumlevels} == 3]
If the `sectnumlevels` attribute has the value 3, this sentence is included.
endif::[]

The ifeval directive does not have a single-line or long-form variant like ifdef and ifndef.

48.5.1. Anatomy

The expression consists of a left-hand value and a right-hand value with an operator in between.

ifeval expression examples

ifeval::[2 > 1]
...
endif::[]

ifeval::["{backend}" == "html5"]
...
endif::[]

ifeval::[{sectnumlevels} == 3]
...
endif::[]

// the value of outfilesuffix includes a leading period (e.g., .html)
ifeval::["{docname}{outfilesuffix}" == "master.html"]
...
endif::[]

48.5.2. Values

Each expression value can reference the name of zero or more AsciiDoc attribute using the
attribute reference syntax (for example, {backend}).
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Attribute references are resolved (substituted) first. Once attributes references have been resolved,
each value is coerced to a recognized type.

When the expected value is a string (i.e., a string of characters), we recommend that you enclose the
expression in quotes.

The following values types are recognized:

number

Either an integer or floating-point value.

quoted string

Enclosed in either single (') or double (") quotes.

boolean

Literal value of true or false.

How value type coercion works

If a value is enclosed in quotes, the characters between the quotes are preserved and coerced to a
string.

If a value is not enclosed in quotes, it is subject to the following type coercion rules:

• an empty value becomes nil (aka null).

• a value of true or false becomes a boolean value.

• a value of only repeating whitespace becomes a single whitespace string.

• a value containing a period becomes a floating-point number.

• any other value is coerced to an integer value.

48.5.3. Operators

The value on each side is compared using the operator to derive an outcome.

==

Checks if the two values are equal.

!=

Checks if the two values are not equal.

<

Checks whether the left-hand side is less than the right-hand side.

<=

Checks whether the left-hand side is less than or equal to the right-hand side.

>

Checks whether the left-hand side is greater than the right-hand side.
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>=

Checks whether the left-hand side is greater than or equal to the right-hand side.

 The operators follow the same rules as operators in Ruby.
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Chapter 49. Docinfo Files
You can add custom content to the head or footer of an output document using docinfo files.
Docinfo files are useful for injecting auxiliary metadata, stylesheet, and script information into the
output not added by the converter.

Different docinfo files get used depending on whether you are converting to HTML or DocBook (but
don’t yet apply when converting to PDF).

49.1. Head docinfo files
The content of head docinfo files gets injected into the top of the document. For HTML, the content
is append to the <head> element. For DocBook, the content is appended to the root <info> element.

The docinfo file for HTML output may contain valid elements to populate the HTML <head> element,
including:

• <base>

• <link>

• <meta>

• <noscript>

• <script>

• <style>


Use of the <title> element is not recommend as it’s already emitted by the
converter.

You do not need to include the enclosing <head> tag as it’s assumed to be the envelope.

Here’s an example:

A head docinfo file for HTML output

<meta name="keywords" content="open source, documentation">
<meta name="description" content="The dangerous and thrilling adventures of an open
source documentation team.">
<link rel="stylesheet" href="basejump.css">
<script src="map.js"></script>

Docinfo files for HTML output must be saved with the .html file extension. See Naming docinfo files
for more details.

The docinfo file for DocBook 5.0 output may include any of the <info> element’s children, such as:

• <address>

• <copyright>

271

https://tdg.docbook.org/tdg/5.0/info.html
https://tdg.docbook.org/tdg/5.0/info.html


• <edition>

• <keywordset>

• <publisher>

• <subtitle>

• <revhistory>

The following example shows some of the content a docinfo file for DocBook might contain.

A docinfo file for DocBook 5.0 output

<author>
  <personname>
    <firstname>Karma</firstname>
    <surname>Chameleon</surname>
  </personname>
  <affiliation>
    <jobtitle>Word SWAT Team Leader</jobtitle>
  </affiliation>
</author>

<keywordset>
  <keyword>open source</keyword>
  <keyword>documentation</keyword>
  <keyword>adventure</keyword>
</keywordset>

<printhistory>
  <para>April, 2019. Twenty-sixth printing.</para>
</printhistory>

Docinfo files for DocBook output must be saved with the .xml file extension. See Naming docinfo
files for more details.

To see a real-world example of a docinfo file for DocBook, checkout the RichFaces Developer Guide
docinfo file.

49.2. Footer docinfo files
Footer docinfo files are differentiated from head docinfo files by the addition of -footer to the file
name. In the HTML output, the footer content is inserted immediately after the footer div (i.e., <div
id="footer">). In the DocBook output, the footer content is inserted immediately before the ending
tag (e.g., </article> or </book>).


One possible use of the footer docinfo file is to completely replace the default
footer in the standard stylesheet. Just set the attribute nofooter, then apply a
custom footer docinfo file.
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49.3. Naming docinfo files
The file that gets selected to provide the docinfo depends on which converter is in use (html,
docbook, etc) and whether the docinfo scope is configured for a specific document (“private”) or for
all documents in the same directory (“shared”). The file extension of the docinfo file must match the
file extension of the output file (as specified by the outfilesuffix attribute, a value which always
begins with a period (.)).

Docinfo file naming

Mode Location Behavior Docinfo file name

Private Head Adds content to <head>/<info>
for <docname>.adoc files.

<docname>-
docinfo<outfilesuffix>

Footer Adds content to end of
document for <docname>.adoc
files.

<docname>-docinfo-
footer<outfilesuffix>

Shared Head Adds content to <head>/<info>
for any document in same
directory.

docinfo<outfilesuffix>

Footer Adds content to end of
document for any document in
same directory.

docinfo-footer<outfilesuffix>

To specify which file(s) you want to apply, set the docinfo attribute to any combination of these
values:

• private-head

• private-footer

• private (alias for private-head,private-footer)

• shared-head

• shared-footer

• shared (alias for shared-head,shared-footer)

Setting docinfo with no value is equivalent to setting the value to private.

For example:

:docinfo: shared,private-footer

This docinfo configuration will apply the shared docinfo head and footer files, if they exist, as well
as the private footer file, if it exists.
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docinfo attribute values were introduced in Asciidoctor 1.5.5 to replace the less
descriptive docinfo1 and docinfo2 attributes. Here are the equivalents of the old
attributes using the new values:

• :docinfo: = :docinfo: private

• :docinfo1: = :docinfo: shared

• :docinfo2: = :docinfo: shared,private

Let’s apply this to an example:

You have two AsciiDoc documents, adventure.adoc and insurance.adoc, saved in the same folder.
You want to add the same content to the head of both documents when they’re converted to HTML.

1. Create a docinfo file containing <head> elements.

2. Save it as docinfo.html.

3. Set the docinfo attribute in adventure.adoc and insurance.adoc to shared.

You also want to include some additional content, but only to the head of adventure.adoc.

1. Create another docinfo file containing <head> elements.

2. Save it as adventure-docinfo.html.

3. Set the docinfo attribute in adventure.adoc to shared,private-head

If other AsciiDoc files are added to the same folder, and docinfo is set to shared in those files, only
the docinfo.html file will be added when converting those files.

49.4. Locating docinfo files
By default, docinfo files are searched for in the same folder as the document file. If you want to
keep them anywhere else, set the docinfodir attribute to their location:

:docinfodir: common/meta

Note that if you use this attribute, only the specified folder will be searched; docinfo files in the
document folder will no longer be found.

49.5. Attribute substitution in docinfo files
Docinfo files may include attribute references. Which substitutions get applied is controlled by the
docinfosubs attribute, which takes a comma-separated list of substitution names. The value of this
attribute defaults to attributes.

For example, if you created the following docinfo file:
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Docinfo file containing a revnumber attribute reference

<edition>{revnumber}</edition>

And this source document:

Source document including a revision number

= Document Title
Author Name
v1.0, 2019-06-01
:doctype: book
:backend: docbook
:docinfo:

Then the converted DocBook output would be:

<?xml version="1.0" encoding="UTF-8"?>
<book xmlns="http://docbook.org/ns/docbook"
    xmlns:xlink="http://www.w3.org/1999/xlink" version="5.0" lang="en">
  <info>
    <title>Document Title</title>
    <date>2019-06-01</date>
    <author>
      <personname>
        <firstname>Author</firstname>
        <surname>Name</surname>
      </personname>
    </author>
    <authorinitials>AN</authorinitials>
    <revhistory>
      <revision>
        <revnumber>1.0</revnumber> ①
        <date>2019-06-01</date>
        <authorinitials>AN</authorinitials>
      </revision>
    </revhistory>
  </info>
</book>

① The revnumber attribute reference was replaced by the source document’s revision number in
the converted output.
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Chapter 50. Counters
Counters are used to store and display ad-hoc sequences of numbers or latin characters. They are
designed for simple use cases. Possible uses include inline itemized lists, paragraph numbers and
serial item numbers.

A counter is implemented as a specialized document attribute. You declare and display a counter
using an augmented attribute reference, in which the attribute name is prefixed with counter: (e.g.,
{counter:name}). Since counters are attributes, counter names follow the same rules as attribute
names. The most important rule to note is that letters in counter names must be lowercase.

The counter value is incremented and displayed every time the counter: attribute reference is used.
The term increment means advance to the next value in the sequence. If the counter value is an
integer, add 1. If the counter value is a character, move to the next letter in the Latin alphabet. The
default start value of a counter is 1.

To create a sequence starting at 1, use the simple form {counter:name} as shown here:

The salad calls for {counter:seq1}) apples, {counter:seq1}) oranges and
{counter:seq1}) pears.

Here’s the resulting output:

The salad calls for 1) apples, 2) oranges and 3) pears.

To increment the counter without displaying it (i.e., to skip an item in the sequence), use the
counter2 prefix instead:

{counter2:seq1}


A counter2 attribute reference on a line by itself will produce an empty paragraph.
You’ll need to adjoin it to the nearest content to avoid this side effect.

To display the current value of the counter without incrementing it, reference the counter name as
you would any other attribute:

{counter2:pnum}This is paragraph {pnum}.

To create a character sequence, or start a number sequence with a value other than 1, specify a
start value by appending it to the first use of the counter:

Dessert calls for {counter:seq1:A}) mangoes, {counter:seq1}) grapes and
{counter:seq1}) cherries.
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Character sequences either run from a,b,c,…x,y,z,{,|… or A,B,C,…,X,Y,Z,[,…
depending on the start value. Therefore, they aren’t really useful for more than 26
items.

The start value of a counter is only recognized if the counter is unset at that point in the document.
Otherwise, the start value is ignored.

To reset a counter attribute, unset the corresponding attribute using an attribute entry. The
attribute entry must be adjacent to a block or else it is ignored.

The salad calls for {counter:seq1:1}) apples, {counter:seq1}) oranges and
{counter:seq1}) pears.

:!seq1:
Dessert calls for {counter:seq1:A}) mangoes, {counter:seq1}) grapes and
{counter:seq1}) cherries.

This gives:

The salad calls for 1) apples, 2) oranges and 3) pears.

Dessert calls for A) mangoes, B) grapes and C) cherries.

Here’s a full example that shows how to use a counter for part numbers in a table.

[caption=""]
.Parts{counter2:index:0}
|===
|Part Id |Description

|PX-{counter:index}
|Description of PX-{index}

|PX-{counter:index}
|Description of PX-{index}
|===

Here’s the output of that table:

Parts

Part Id Description

PX-1 Description of PX-1

PX-2 Description of PX-2
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Structuring, Navigating, and
Referencing Your Content
Asciidoctor provides macros or attributes for the specialized frontmatter and backmatter sections
commonly found in journal articles, academic papers, and books. In the following sections, you’ll
learn the dependency, structure, and output rules for the special section macros and attributes and
how to use them.
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Chapter 51. Colophon
Book colophons list information such as the ISBN, publishing house, edition and copyright dates,
legal notices and disclaimers, cover art, design, and book layout credits, and any significant
production notes. In most mass market books, the colophon is on the verso (back side) of the title
page, but it can also be located at the end of the book.

[colophon]
= Colophon

The Asciidoctor Press, Ceres and Denver

(C) 2018 by The Asciidoctor Press

Published in the Milky Way Galaxy

This book is designed by Dagger Flush, Denver, Colorado.
The types are handset Chinchilla and Dust, designed by Leeloo.
Leeloo designed the typefaces to soften the bluntness of documentation.
Created in Asciidoctor and Fedora 27.
The printing and binding is by Ceres Lithographing, Inc., Ceres, Milky Way.
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Chapter 52. Table of Contents
A table of contents (TOC) is an index of section and subsection titles that can be automatically
generated from the document’s structure when converting a document with Asciidoctor.

To enable the auto-generated TOC, you must set the toc attribute.

The toc attribute can be specified via the command line (-a toc),

TOC enabled via the CLI

$ asciidoctor -a toc adventure.adoc

or in the document header (:toc:).

TOC enabled via the document header

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon
:toc:

This journey begins on a bleary...

== Cavern Glow

The river rages through the cavern, rattling its content...

When no other options are specified, the TOC is inserted directly below the document header
(document title, author, and revision lines), it has the title Table of Contents, and contains section 1
and section 2 level titles only.
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Result: Setting the toc attribute

Asciidoctor allows you to customize the layout, placement, and title of the table of contents.
However, not all customizations are supported by all converters. See the Table of Contents
Summary to find out which customizations are available to each backend.

52.1. In-Document Placement
toc values of auto (the default), preamble, and macro place the TOC in the main document area.

When the value of toc attribute is unspecified or auto, the TOC is inserted directly below the
document header (document title, author and revision lines).

When toc is set to preamble, the TOC is placed immediately below the preamble.


When using the preamble placement, the TOC will not appear if your document
does not have a preamble. To fix this problem, just set the toc attribute to an
empty value (or auto).

To place the TOC anywhere else in the document, set the toc attribute to macro. Then, put the block
toc macro (toc::[]) at the location in the document where you want the TOC to appear. The toc
macro should appear at most once in any document.

If toc is not set to macro, any toc macro in the document will be silently ignored.
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Setting toc value to macro and using the block toc macro

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon
:toc: macro ①

This journey begins on a bleary...

== Cavern Glow

toc::[] ②

The river rages through the cavern, rattling its content...

① The toc attribute must be set to macro in order to enable the use of the toc macro.

② In this example, the toc macro is placed below the first section’s title, indicating that this is the
location where the TOC will be displayed once the document is rendered.

Result: Setting toc value to macro and using the block toc macro

52.2. Side Column Placement
When converting to HTML, you can position the TOC to the left or right of the main content column
by assigning the value left or right to the toc attribute, respectively. In this case, the sidebar
column containing the TOC is both fixed and scrollable.
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Assigning the left value to toc

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon
:toc: left

This journey begins on a bleary...

== Cavern Glow

The river rages through the cavern, rattling its content...

== The Ravages of Writing

Her finger socks had been vaporized by crystalline nuggets of...

=== A Recipe for Potion

Two fresh Burdockian leaves, harvested by the light of the teal moons...

Result: Assigning the left value to toc

This positioning is achieved using CSS, which means it depends on support from the stylesheet.
However, it’s only honored if there’s sufficient room on the screen for a sidebar column. If there
isn’t sufficient room available (i.e., the screen width falls below a certain breakpoint), the TOC will
automatically shift back to the center, appearing directly below the document title.


The TOC is always placed in the center in an embeddable HTML document,
regardless of the value of the toc attribute.

52.3. Title
The toc-title attribute allows you to change the title of the TOC.
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Defining a new TOC title

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon
:toc: ①
:toc-title: Table of Adventures ②

This journey begins on a bleary...

== Cavern Glow

The river rages through the cavern, rattling its content...

① The toc attribute must be set in order to use toc-title.

② toc-title is set and assigned the value Table of Adventures in the document’s header.

Result: Defining a new TOC title

52.4. Levels
By default, the TOC will display level 1 and level 2 section titles. You can set a different depth with
the toclevels attribute.
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Defining a new toclevels value

= The Dangerous and Thrilling Documentation Chronicles
Kismet Chameleon
:toc: ①
:toclevels: 4 ②

This journey begins on a bleary...

== Cavern Glow

The river rages through the cavern, rattling its content...

== The Ravages of Writing

Her finger socks had been vaporized by crystalline nuggets of...

=== A Recipe for Potion

Two fresh Burdockian leaves, harvested by the light of the teal moons...

==== Searching for Burdockian

Crawling through the twisted understory...

① The toc attribute must be set in order to use toclevels.

② toclevels is set and assigned the value 4 in the document’s header. The TOC will list the titles of
the section 1, 2, 3, and 4 levels when the document is rendered.
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Result: Defining a new toclevels value

52.5. Using a TOC with Embeddable HTML
When AsciiDoc is converted to embeddable HTML (i.e., the header_footer option is false), there are
only three valid values for the toc attribute:

• auto (or unspecified value)

• preamble

• macro

All of the following environments convert AsciiDoc to embeddable HTML:

• the file viewer on GitHub and GitLab

• the AsciiDoc preview in an editor like Atom, Brackets or AsciidocFX

• the Asciidoctor browser extensions


The side column placement (left or right) isn’t available in this mode. That’s
because the embeddable HTML doesn’t have the outer framing (or the CSS)
necessary to support a side column TOC.

52.6. Table of Contents Summary
Table of contents attributes and allowed values
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Attribute Values Example Syntax Comments Backends

toc auto, left,
right, macro,
preamble

:toc: left Not set by default. Defaults
to auto if value is
unspecified.

html

auto, macro,
preamble

:toc: macro Not set by default. Defaults
to auto if value is
unspecified.

html
(embeddable
)

auto :toc: Not set by default. The
table of contents is placed
after the title page (See
issue #233 for
developments).

pdf

auto :toc: Not set by default. The
placement and styling of
the table of contents is
determined by the
DocBook toolchain
configuration.

docbook

toclevels 1–5 :toclevels: 4 Default value is 2. html, pdf

toc-title <text> :toc-title: Contents Default value is Table of
Contents.

html, pdf
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Chapter 53. Abstract
An abstract is a concise overview of an article or of a chapter in a book. They are frequently found
in the frontmatter of academic, research, and analytical papers. A complete (i.e., informative)
abstract states the key topics and findings while a limited (i.e., descriptive) abstract briefly
describes the structure of the content.

The abstract may be written using a section, open block, or paragraph and must bear the abstract
style. If used, the abstract must appear before the first section of an article (at the start of the
preamble) or at the start of a chapter in a book. An abstract may not be used before a part or
chapter in a book.

Here’s an example of an abstract at the beginning of an article, defined using a section:

= Article Title

[abstract]
== Abstract

Documentation is a distillation of many long, squiggly adventures.

== First Section

Here’s an example of the same abstract defined using a paragraph:

= Article Title

[abstract]
.Abstract
Documentation is a distillation of many long, squiggly adventures.

== First Section

In the book doctype, the abstract section must be a level below the chapter.

== Chapter Title

[abstract]
=== Chapter Abstract

Documentation is a distillation of many long, squiggly adventures.

=== First Section

An abstract defined using an open block or paragraph does not require a title and does not depend
on a subsequent section to terminate.
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= Article Title

[abstract]
.Optional Abstract Title
--
This article will take you on a wonderful adventure of knowledge.

You'll start with the basics.
Beyond that, where you go is up to you.
--

Your journey begins here.


To include a quote at the beginning of a chapter in a book, wrap the quote block
inside an abstract block.
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Chapter 54. Preface
The preface is a special section of a book that precedes the first part or chapter of the book (or the
first chapter of a part). The preface can contain subsections.

An author explains how the idea behind her book manifested and developed in the preface. The
preface can include acknowledgments and may be signed by the author with her name, writing
date and location.

For multi-part books, the preface must be defined as a level-0 section and any subsections must
start at level 2.

= Book Title
:doctype: book

[preface]
= Documentation Preface

The basis for this documentation germinated when I awoke one morning and was
confronted by the dark and stormy eyes of the chinchilla.
She had conquered the mountain of government reports that, over the course of six
months, had eroded into several minor foothills and a creeping alluvial plain of loose
papers.

=== Acknowledgments in Preface

I'd like to thank the Big Bang and String Theory.
Would we be without them?

= Part 1

...

For books without parts, the preface must be defined as a level-1 section and any subsections must
start at level 2.
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= Book Title
:doctype: book

[preface]
== Documentation Preface

The basis for this documentation germinated when I awoke one morning and was
confronted by the dark and stormy eyes of the chinchilla.
She had conquered the mountain of government reports that, over the course of six
months, had eroded into several minor foothills and a creeping alluvial plain of loose
papers.

=== Acknowledgments in Preface

I'd like to thank the Big Bang and String Theory.
Would we be without them?

== Chapter 1

...

The same structure can be used to define a preface for a part.

As an alternative to a special section, Asciidoctor will automatically promote the preamble to a
preface. The title of the preface is set using the preface-title document attribute. When defined
this way, the preface may not contain subsections.

= Book Title
:doctype: book
:preface-title: Documentation Preface

The basis for this documentation germinated when I awoke one morning and was
confronted by the dark and stormy eyes of the chinchilla.
She had conquered the mountain of government reports that, over the course of six
months, had eroded into several minor foothills and a creeping alluvial plain of loose
papers.

== Chapter 1

...

The special section is the preferred way of defining a preface.
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Chapter 55. Dedication
The dedication page is where the author expresses gratitude toward a person.

[dedication]
= Dedication

For S.S.T.--

thank you for the plague of archetypes.
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Chapter 56. Book Parts and Chapters
You may group the sections of your document into parts when you set the doctype to book. In fact,
parts can only be used when the doctype is book.

When a document has its doctype set to book and contains at least one part, it implicitly becomes a
multi-part book. There is no dedicated doctype value for a multi-part book to distinguish it from a
regular book. That distinction is made by the content.

Part titles are specified with a single equals sign (=), the equivalent to the structure of a document
title (i.e., level-0 section). Each part must contain at least one section (a chapter or special section).
Immediately after the part title, you may insert an optional introduction, which is designated by the
partintro style.

[partintro]
.Optional part introduction title
--
Optional part introduction goes here.
--

A part can also include its own preface, bibliography, glossary and index.
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= Title of Part 1

[partintro]
--
This is the introduction to the first part of our mud-encrusted journey.
--

== Chapter 1

There was mud...

== Chapter 2

Great gobs of mud...

[glossary]
== Part 1 Glossary

[glossary]
mud:: wet, cold dirt

= Part 2

[preface]
== Part 2 Preface

This part was written because...

== Chapter 1

The mud had turned to cement...

When using the PDF converter (i.e., Asciidoctor PDF), the value of the chapter-label attribute
(followed by a space) is automatically added to the beginning of the chapter title. A chapter title is a
level-1 section title when the doctype is book.

You can modify this prefix by redefining the chapter-label attribute.

:chapter-label: Chapter ~

To use no prefix, set the value to blank.
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Chapter 57. Appendix
You can indicate that a section, part, or chapter is an appendix by adding an [appendix] line above
the section title.

[appendix]
== Copyright and License

While the AsciiDoc structure allows appendices to be placed anywhere, it’s customary to place them
at the end of the document, after all other sections.

Sections marked as appendix have a different title, which is built as follows:

• A fixed prefix (taken from the value of the appendix-caption attribute, which defaults to
“Appendix”)

• A letter that represents the number of this appendix within the sequence of appendices (A, B, C,
…)

• A colon

• The original section title

For example:

Appendix A: Copyright and License

The prefix can be modified by defining the appendix-caption attribute. This value can be changed
using:

:appendix-caption: Appx

Or it can be unset using:

:appendix-caption!:

Appendices can have subsections. However, there are some rules to follow depending on which
type of document you are creating.

For articles, the appendix must be defined as a level-1 section. (If a level-0 section is used, a level-1
section is implied). For example:
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= Article Title
:appendix-caption: Appx
:sectnums:
:toc:

== First Section

=== Subsection

[appendix]
== First Appendix

=== First Subsection

=== Second Subsection

[appendix]
== Second Appendix

The table of contents will appear as follows:

1. First Section
  1.1. Subsection
Appx A: First Appendix
  1.1. First Subsection
  1.2. Second Subsection
Appx B: Second Appendix

For books, the appendix must be defined as a level-1 section if you want the appendix to be a
adjacent to other chapters (and in the current part if the book has multiple parts). In a multi-part
book, if you want the appendix to be adjacent to other parts, the appendix must be defined as a
level-0 section. In either case, the first subsection of the appendix must be a level-3 section, not a
level-2 section. That’s because an appendix cannot contain chapters.

The following example shows how to define an appendix for a multi-book (take away the part title
if you’re creating a simple book):
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= Book Title
:doctype: book
:appendix-caption: Appx
:sectnums:
:toc:

= First Part

== First Chapter

=== Subsection

[appendix]
= First Appendix

=== First Subsection

=== Second Subsection

[appendix]
= Second Appendix

The table of contents will appear as follows:

First Part
1. First Chapter
  1.1. Subsection
Appx A: First Appendix
  1.1. First Subsection
  1.2. Second Subsection
Appx B: Second Appendix
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Chapter 58. Glossary
You can include a glossary of definitions by including the [glossary] marker before the section
header and before the first definition.

[glossary]
== Glossary

[glossary]
mud:: wet, cold dirt
rain::
    water falling from the sky
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Chapter 59. Bibliography
AsciiDoc has basic support for bibliographies. AsciiDoc doesn’t concern itself with the structure of
the bibliography entry itself, which is entirely freeform. What it does is provide a way to make
references to the entries from the same document and output the bibliography with proper
semantics for processing by other toolchains (such as DocBook).

In order to reference a bibliography entry, you need to assign a non-numeric label to the entry. To
assign this label, prefix the entry with the label enclosed in a pair of triple square brackets (e.g.,
[[[label]]]). We call this a bibliography anchor. Using this label, you can then reference the entry
from anywhere above the bibliography in the same document using the normal cross reference
syntax (e.g., <<label>>).

By default, the bibliography anchor and reference to the bibliography entry is converted to
[<label>], where <label> is the ID of the entry. If you specify xreftext on the bibliography anchor
(e.g., [[[label,xreftext]]]), the bibliography anchor and reference to the bibliography entry
converts to [<xreftext>] instead.

If you want the bibliography anchor and reference to appear as a number, assign the number of the
entry using the xreftext. For example, [[[label,1]]] will be converted to [1].

The bibliography entries themselves are declared as items in an unordered list. You promote a
normal unordered list to a bibliography list by adding the bibliography style. However, to be
conforming, bibliography lists must be contained inside a bibliography section. A bibliography
section is a section with the special bibliography style. By adding the bibliography style to the
section, you implicitly add it to each unordered list in that section.


If the bibliography style is used on an unordered list outside of a bibliography
section, the resulting behavior is undefined.

Let’s consider an example.

Bibliography with inbound references

_The Pragmatic Programmer_ <<pp>> should be required reading for all developers.
To learn all about design patterns, refer to the book by the "`Gang of Four`" <<gof>>.

[bibliography]
== References

- [[[pp]]] Andy Hunt & Dave Thomas. The Pragmatic Programmer:
  From Journeyman to Master. Addison-Wesley. 1999.
- [[[gof,2]]] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design
Patterns:
  Elements of Reusable Object-Oriented Software. Addison-Wesley. 1994.

This renders as:
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The Pragmatic Programmer [pp] should be required reading for all developers. To learn all about
design patterns, refer to the book by the “Gang of Four” [2].

References
▪ [pp] Andy Hunt & Dave Thomas. The Pragmatic Programmer: From Journeyman to Master.

Addison-Wesley. 1999.

▪ [2] Erich Gamma, Richard Helm, Ralph Johnson & John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley. 1994.

If you want more advanced features such as automatic numbering and custom citation styles, try
the asciidoctor-bibtex project.


To escape a bibliography anchor anywhere in the text, use the syntax [[[word]]].
This prevents the anchor from being matched as a bibliography anchor or a
normal anchor.
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Chapter 60. Index
You can mark index terms explicitly in AsciiDoc content. Index terms form a controlled vocabulary
that can be used to navigate the document by keyword starting from an index.

60.1. Index Terms
There are two types of index terms in AsciiDoc:

flow index term

indexterm2:[<primary>] or ((<primary>))

An index term that appears in the flow of text (i.e., a visible term) and in the index. This type of
index term can only be used to define a primary entry.

concealed index term

indexterm:[<primary>, <secondary>, <tertiary>] or (((<primary>, <secondary>, <tertiary>)))

A group of index terms that appear only in the index. This type of index term can be used to
define a primary entry as well as optional secondary and tertiary entries.

Here’s an example that shows the two forms in use.

The Lady of the Lake, her arm clad in the purest shimmering samite,
held aloft Excalibur from the bosom of the water,
signifying by divine providence that I, ((Arthur)), ①
was to carry Excalibur (((Sword, Broadsword, Excalibur))). ②
That is why I am your king. Shut up! Will you shut up?!
Burn her anyway! I'm not a witch.
Look, my liege! We found them.

indexterm2:[Lancelot] was one of the Knights of the Round Table. ③
indexterm:[knight, Knight of the Round Table, Lancelot] ④

① The double parenthesis form adds a primary index term and includes the term in the generated
output.

② The triple parenthesis form allows for an optional second and third index term and does not
include the terms in the generated output (i.e., concealed index term).

③ The inline macro indexterm2:[primary] is equivalent to the double parenthesis form.

④ The inline macro indexterm:[primary, secondary, tertiary] is equivalent to the triple
parenthesis form.

If you’re defining a concealed index term (i.e., the indexterm macro), and one of the terms contains a
comma, you must surround that segment in double quotes so the comma is treated as content. For
example:
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I, King Arthur.
indexterm:[knight, "Arthur, King"]

or

I, King Arthur.
(((knight, "Arthur, King")))

60.2. Index Catalog
Although index terms are always processed, only Asciidoctor PDF and the DocBook toolchain
support creating an index catalog automatically. To create an index, define a level-1 section marked
with the style index at the end of your document.

[index]
== Index

Both Asciidoctor PDF and the DocBook toolchain will automatically populate an index into this seed
section.


The built-in HTML5 converter in Asciidoctor does not currently generate an index.
Follow issue #450 to track the progress of this feature.
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Chapter 61. Footnotes
You can add footnotes to your document using the footnote macro (footnote:[]). If you plan to
reference a footnote more than once, use the footnote macro with a target (footnote:id[]).

Footnote syntax

The hail-and-rainbow protocol can be initiated at five levels:
double, tertiary, supernumerary, supermassive, and apocalyptic party.footnote:[The
double hail-and-rainbow level makes my toes tingle.] ① ②
A bold statement!footnote:disclaimer[Opinions are my own.] ③

Another outrageous statement.footnote:disclaimer[] ④

① Insert the footnote macro directly after any punctuation. Note that the footnote macro only uses
a single colon (:).

② Insert the footnote’s content within the square brackets ([]). The text may span several lines.

③ If you plan to reuse a footnote, specify a unique ID in the target position.

④ To reference an existing footnote, you only need to insert the ID in the target slot (leaving the
text in the square brackets empty).

The footnotes will be numbered consecutively throughout the article.

Rendered footnotes

The hail-and-rainbow protocol can be initiated at five levels: double, tertiary, supernumerary,
supermassive, and apocalyptic party.[4] A bold statement![5]

Another outrageous statement.[3]

61.1. Externalizing a Footnote
Since footnotes are defined using an inline macro, the footnote content ends up right alongside the
text it’s annotating, making that text harder to read. You can solve this probably by externalizing
your footnotes using document attributes.

Here’s the previous example with the footnotes defined in document attributes and inserted using
attribute references. Notice you still get the benefit of seeing where the footnote is placed without
all the noise.
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Externalized footnote

:fn-hail-and-rainbow: footnote:[The double hail-and-rainbow level makes my toes
tingle.]
:fn-disclaimer: footnote:disclaimer[Opinions are my own.]

The hail-and-rainbow protocol can be initiated at five levels:
double, tertiary, supernumerary, supermassive, and apocalyptic party.{fn-hail-and-
rainbow}
A bold statement!{fn-disclaimer}

Another outrageous statement.{fn-disclaimer}

This approach works since attribute references are expanded before footnotes are parsed. The
redundant text in the second disclaimer footnote is simply ignored.

You could even simplify the attribute names to fn-1, fn-2, etc. if brevity is your main concern. And
once in document attributes, these defintions could even be moved to an included file.

61.2. Footnotes in Headings
If you use a footnote in a heading, you’ll likely find that the footnote sequence is wrong. That’s
because headings (section titles and discrete headings) get converted out of document order for the
purpose of generating IDs and setting up cross references.

To resolve this problem, you must assign an explicit ID and reftext to any heading that contains a
footnote. For example:

See <<heading>>.

[[heading,Heading]]
== Heading{blank}footnote:[This is a heading with a footnote]

Not only will this prevent the footnote from being processed out of document order (and thus
assigned the wrong number in the sequence), it will also prevent the footnote number from
reappearing in the text of an xref.

304



Processing Your Content
While the AsciiDoc syntax is designed to be readable in raw form, the intended audience for that
format are writers and editors. Readers aren’t going to appreciate the raw text nearly as much.
Aesthetics matter. You’ll want to apply nice typography with font sizes that adhere to the golden
ratio, colors, icons and images to give it the respect it deserves. That’s where converters, backends,
and themes come into play.
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Chapter 62. Selecting an Output Format
The Asciidoctor processor is typically used to parse an AsciiDoc document and convert it to a
variety of formats, such as HTML, DocBook, or PDF. This section describes how to specify the output
format.

The processor generates the output format using a converter. Each converter is mapped to the
name of a backend. You specify the backend—and, in turn, the converter—using the -b (--backend)
command line option or backend API option. If no backend is specified, the processor uses the
converter for the default backend (html5).

Asciidoctor provides several built-in converters, which are mapped to the following backend
names:

html (or html5)

HTML 5, styled with CSS3 (default).

xhtml (or xhtml5)

The XHTML variant of the output from html5.

docbook (or docbook5)

DocBook 5.0 XML.

manpage

Manual pages for Unix and Unix-like operating systems.

Asciidoctor also has several add-on converters, which can be plugged in by adding the appropriate
library to the runtime path (e.g., -r asciidoctor-pdf). These converters are mapped to the following
backend names:

pdf

PDF, a portable document format. Requires the asciidoctor-pdf gem.

epub3

EPUB3, a distribution and interchange format standard for digital publications and documents.
Requires the asciidoctor-epub3 gem.

latex

LaTeX, a document preparation system for high-quality typesetting. Requires the asciidoctor-
latex gem.

mallard

Mallard 1.0 XML. Requires the asciidoctor-mallard gem (not yet released).

There are also converters available for HTML5 presentation systems such as reveal.js and
Bespoke.js. Those converters are still in development and will be documented once releases become
available.
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Chapter 63. HTML
Asciidoctor’s default output format is HTML.

html5

HTML 5 markup styled with CSS3.

63.1. Using the Command Line
In this section, we’ll create a sample document, then process and convert it with Asciidoctor’s html5
converter.

1. Create an AsciiDoc file like the one below

2. Save the file as mysample.adoc

= My First Experience with the Dangers of Documentation

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.

To convert mysample.adoc to HTML from the command line:

1. Open a console

2. Switch to the directory that contains the mysample.adoc document

3. Call the Asciidoctor processor with the asciidoctor command, followed by the name of the
document you want to convert

$ asciidoctor mysample.adoc

Remember, Asciidoctor’s default converter is html5, so it isn’t necessary to specify it with the -b
command.

You won’t see any messages printed to the console. If you type ls or view the directory in a file
manager, there is a new file named mysample.html.

$ ls
mysample.adoc  mysample.html
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Asciidoctor derives the name of the output document from the name of the input document.

Open mysample.html in your web browser. Your document should look like the image below.

The document’s text, titles, and link is styled by the default Asciidoctor stylesheet, which is
embedded in the HTML output. As a result, you could save mysample.html to any computer and it
will look the same.

63.2. Using the Ruby API
Asciidoctor also includes a Ruby API that lets you generate an HTML document directly from a
Ruby application.

require 'asciidoctor'

Asciidoctor.convert_file 'mysample.adoc'

Alternatively, you can capture the HTML output in a variable instead of writing it to a file.

html = Asciidoctor.convert_file 'mysample.adoc', to_file: false, header_footer: true
puts html

The convert methods also accept a map of options. Use of this map is described in Ruby API
Options.

63.3. Styling the HTML with CSS
Asciidoctor uses CSS for HTML document styling and JavaScript for generating document attributes
such as a table of contents and footnotes. It comes bundled with a stylesheet, named asciidoctor.css.
When you generate a document with the html5 backend, the asciidoctor.css stylesheet is embedded
into the HTML output by default (when the safe mode is less than SECURE).

You have the option of linking to the stylesheet instead of embedding it. This is the mandatory
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behavior when the safe mode is SECURE. If your stylesheet is being linked when you expect it to be
embedded, lower the safe mode (safe is the recommend value).

To have your document link to the stylesheet, set the linkcss attribute in the document’s header.

= My First Experience with the Dangers of Documentation
:linkcss:

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.

You can also set linkcss with the CLI.

$ asciidoctor -a linkcss mysample.adoc

Now, when you view the directory, you should see the file asciidoctor.css in addition to
mysample.adoc and mysample.html. The linkcss attribute automatically copies asciidoctor.css to the
output directory. Additionally, you can inspect mysample.html in your browser and see <link
rel="stylesheet" href="./asciidoctor.css"> inside the <head> tags.
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If you don’t want any styles applied to the HTML output of your document, unset the stylesheet
attribute.

$ asciidoctor -a stylesheet! mysample.adoc

One of Asciidoctor’s strengths is the ease in which you can swap the default stylesheet for an
alternative Asciidoctor theme or use your own custom stylesheet.

63.4. Managing Images
Images are not embedded in the HTML output by default. If you have image references in your
document, you’ll have to save the image files in the same directory as your converted document.

As an alternative, you can embed the images directly into the document by setting the data-uri
document attribute.

$ asciidoctor -a data-uri mysample.adoc
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= My First Experience with the Dangers of Documentation
:imagesdir: myimages
:data-uri:

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

[.left.text-center]
image::wolpertinger.jpg[Wolpertinger]

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.

If the target of one or more images in the document is a URI, you must also set the allow-uri-read
attribute securely and run Asciidoctor in SECURE mode or less.

$ asciidoctor -a data-uri -a allow-uri-read mysample.adoc
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The same is true when converting the document to PDF using Asciidoctor PDF, even if the allow-
uri-read attribute is not set (since the behavior is implied).

63.5. CodeRay and Pygments Stylesheets
Asciidoctor will also embed the theme stylesheet for the CodeRay or Pygments syntax highlighter.

CodeRay

If the source-highlighter attribute is coderay and the coderay-css attribute is class, the CodeRay
stylesheet is:

• embedded by default

• copied to the file asciidoctor-coderay.css inside the stylesdir folder within the output directory if
linkcss is set

Pygments

If the source-highlighter attribute is pygments and the pygments-css attribute is class, the Pygments
stylesheet is:

• embedded by default

• copied to the file asciidoctor-pygments.css inside the stylesdir folder within the output directory
if linkcss is set
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Chapter 64. XHTML
To convert AsciiDoc to XHTML, set the backend to xhtml5.

Produce XHTML using the built-in HTML converter

asciidoctor -b xhtml5 document.adoc

To produce XHTML instead of HTML when using converter templates, set the htmlsyntax attribute
to xml in addition to the backend option:

Produce XHTML using custom templates

asciidoctor -T /path/to/templates -b slides -a htmlsyntax=xml document.adoc

Black Box Decoded: XHTML and htmlsyntax

XHTML output is a special mode of the built-in HTML5 converter. It is activated by prefixing
the backend value with x (e.g., xhtml or xhtml5). This hint implicitly assigns the htmlsyntax
attribute to the value xml, which normally has the value html.

For all other converters, the htmlsyntax attribute is not set explicitly. If you want a converter
template that’s written in Slim or Haml to output XHTML instead of the default HTML, you
simply need to set the htmlsyntax attribute to xml explicitly. Asciidoctor will pass on this
preference to the Slim or Haml template engine by setting the :format option to :html5.
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Chapter 65. DocBook
Asciidoctor can produce DocBook 5.0 output. Since the AsciiDoc syntax was designed with DocBook
output in mind, the conversion is very good. There’s a corresponding DocBook element for each
markup in the AsciiDoc syntax.

To convert the mysample.adoc document to DocBook 5.0 format, call the processor with the backend
flag set to docbook.

$ asciidoctor -b docbook mysample.adoc

A new XML document, named mysample.xml, will now be present in the current directory.

$ ls
mysample.adoc  mysample.html  mysample.xml

Here’s a snippet of the XML generated by the DocBook converter.
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XML generated from AsciiDoc

<?xml version="1.0" encoding="UTF-8"?>
<article xmlns="http://docbook.org/ns/docbook"
    xmlns:xl="http://www.w3.org/1999/xlink" version="5.0" xml:lang="en">
  <info>
    <title>Hello, AsciiDoc!</title>
    <date>2013-09-03</date>
    <author>
      <personname>
        <firstname>Doc</firstname>
        <surname>Writer</surname>
      </personname>
      <email>doc@example.com</email>
    </author>
    <authorinitials>DW</authorinitials>
  </info>
  <simpara>
    An introduction to <link xl:href="http://asciidoc.org">AsciiDoc</link>.
  </simpara>
  <section xml:id="_first_section">
    <title>First Section</title>
    <itemizedlist>
      <listitem>
        <simpara>item 1</simpara>
      </listitem>
      <listitem>
        <simpara>item 2</simpara>
      </listitem>
    </itemizedlist>
  </section>
</article>

If you’re on Linux, you can view the DocBook file with Yelp.

$ yelp mysample.xml

And of course, if you’re using the Asciidoctor Ruby API, you can generate a DocBook document
directly from your application.

Generate DocBook output from the API

Asciidoctor.convert_file 'mysample.adoc', backend: 'docbook'

By default, the docbook converter produces DocBook 5.0 output that is compliant to the DocBook
5.0 specification.

A summary of the differences are as follows:

315

https://wiki.gnome.org/action/show/Apps/Yelp


• XSD declarations are used on the document root instead of a DTD

• <info> elements for document info instead of <articleinfo> and <bookinfo>

• elements that hold the author’s name are wrapped in a <personname> element

• the id for an element is defined using an xml:id attribute

• <link> is used for links instead of <ulink>

• the URL for a link is defined using the xl:href attribute

Refer to What’s new in DocBook v5.0? for more details about how DocBook 5.0 differs from
DocBook 4.5.

If you need to output DocBook 4.5, you may find the community-supported DocBook 4.5 Converter
useful.

$ asciidoctor -b docbook45 mysample.adoc
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Chapter 66. Man Pages
One of the more specialized uses of AsciiDoc is to serve as a shorthand for generating man pages
(short for manual pages) for Unix and Unix-like operating systems.

A man page is coded in the roff typesetting language. By adhering to a specific structure in the man
page file, the man command can parse the content and present a formatted document in a textual
(command line) pager. Manual pages provide a unified help catalog for all commands in the
system. For a full description, see the roff man page (or type man roff or man 7 man).

Asciidoctor can produce roff-formatted man pages if the structure of the AsciiDoc document
adheres to the manpage doctype structure (described later in this section).

To produce a roff-formatted man page from an AsciiDoc file that declares the manpage doctype,
run:

$ asciidoctor -b manpage source.adoc

Note that the man page converter sets the output file name to progname.1, where progname is the
name of the command and 1 is the volume number, as defined by the doctitle of the source
document.

When converting to the man page format, Asciidoctor uppercases the titles of all level-0 and level-1
sections. This saves you from having to type section titles in all uppercase. It also makes the
document portable to other output formats since this style is only needed in the man page output to
align with conventions.



If you’re use Ruby 2.4 or better, Asciidoctor will uppercase any letter in the title
that is recognized by the Unicode specification as having an uppercase equivalent
(which includes non-Latin letters). Prior to Ruby 2.4, Ruby could only uppercase
Latin letters.

Asciidoctor can also produce HTML and PDF versions similar to the man output for viewing in other
contexts. To see the man page in HTML instead, run:

$ asciidoctor source.adoc

Here is an example man page composed in AsciiDoc for the eve command:
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= eve(1)
Andrew Stanton
v1.0.0
:doctype: manpage
:manmanual: EVE
:mansource: EVE
:man-linkstyle: pass:[blue R < >]

== Name

eve - analyzes an image to determine if it's a picture of a life form

== Synopsis

*eve* [_OPTION_]... _FILE_...

== Options

*-o, --out-file*=_OUT_FILE_::
  Write result to file _OUT_FILE_.

*-c, --capture*::
  Capture specimen if it's a picture of a life form.

== Exit status

*0*::
  Success.
  Image is a picture of a life form.

*1*::
  Failure.
  Image is not a picture of a life form.

== Resources

*Project web site:* http://eve.example.org

== Copying

Copyright (C) 2008 {author}. +
Free use of this software is granted under the terms of the MIT License.

The manpage doctype has the following required parts:

Document Header

A man page document header is mandatory. The title line contains the man page name followed
immediately by the manual section number in round brackets. The title name should not contain
white space. The manual section number is a single digit optionally followed by a single
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character.

The NAME Section

The first man page section is mandatory, must be titled “NAME” and must contain a single
paragraph (usually a single line) consisting of a list of one or more comma separated command
name(s) separated from the command purpose by a dash character. The dash must have at least
one white space character on either side.

The SYNOPSIS Section

The second man page section is mandatory and must be titled “SYNOPSIS”.

Subsequent sections are optional, but typical sections include “SEE ALSO”, “BUGS REPORTS”,
“AUTHORS” and “COPYRIGHT”.

There are several built-in document attributes that affect only man pages. If used, they must be set
in the document header.

Built-in document attributes specific to the manpage doctype

Attribute name Description Value (as parsed from example
above)

mantitle Alternative way to set the man page
name.

ASCIIDOCTOR(1)

manvolnum Manual section number. 1

manname Alternative way to set the command
name.

asciidoctor

manpurpose Alternative way to set the command
purpose.

converts AsciiDoc source files

man-linkstyle Style the links in the manpage output.
A valid link format sequence.

blue R <>

mansource The source to which the man page
pertains. When producing DocBook, it
becomes a DocBook refmiscinfo
attribute and appears in the footer.

Asciidoctor

manversion The version of the man page. Defaults
to revnumber if not specified. When
producing DocBook, it becomes a
DocBook refmiscinfo attribute and
appears in the footer. Not used by
Asciidoctor.

1.5.4

manmanual Manual name. When producing
DocBook, it becomes a DocBook
refmiscinfo attribute and appears in
the footer.

Asciidoctor Manual

Refer to the AsciiDoc source of the Asciidoctor man page to see a complete example. The man page
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for Asciidoctor is produced using the built-in man page converter in Asciidoctor. The man pages for
git are also produced from AsciiDoc documents, so you can use those as another example to follow.
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Chapter 67. PDFs
Conversion from AsciiDoc to PDF is made possible by a number of tools.

Asciidoctor PDF

A native PDF converter for Asciidoctor (converts directly from AsciiDoc to PDF using Prawn).

Instructions for installing and using Asciidoctor PDF are documented in the project’s README.
The tool provides built-in theming via a YAML configuration file, which is documented in the
theming guide.


Asciidoctor PDF is the preferred tool for converting to PDF and is fully
supported by the Asciidoctor community.

a2x

A DocBook toolchain frontend provided by that AsciiDoc Python project.

To use this tool, you should first convert to DocBook using Asciidoctor, then convert the DocBook
to PDF using a2x. a2x accepts a DocBook file as input and can convert it to a PDF using either
Apache FOP or dblatex. Instructions for using a2x are documented in the project’s man page.

asciidoctor-fopub

A DocBook toolchain frontend similar to a2x, but which only requires Java to be installed on
your machine.

Instructions for using asciidoctor-fopub are documented in the project’s README. To alter the
look and feel of the PDF, it’s necessary to pass XSL parameters or modify the XSLT. More
information about customization can be found in DocBook XSL: The Complete Guide.
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Chapter 68. Preview Your Content

68.1. Guard/Live Viewer
Guard

AsciiDoc is a plugin for Guard that converts watched AsciiDoc files to the specified output format
whenever they change using Asciidoctor.

Instructions for using the Guard/Live viewer are documented in the project’s README.
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Chapter 69. CLI Inputs and Outputs
So far, you’ve seen how to pass a single input file to the CLI for it to convert. You can also convert
multiple files at once, read content from STDIN, write content to STDOUT, or write content to a
different output file or directory. This section explains the various input and output options of the
CLI.

69.1. Process Multiple Source Files from the CLI
You can pass multiple source files or a filename pattern to the Asciidoctor CLI and it will convert
each file given in turn.

Let’s assume there exist two AsciiDoc files in the current directory, a.adoc and b.adoc. You can pass
both files to Asciidoctor using a single command, as follows:

$ asciidoctor a.adoc b.adoc

Asciidoctor will convert both files, transforming a.adoc to a.html and b.adoc to b.html.

To save some typing, you can use the glob operator (*) to match all AsciiDoc files in the current
directory using a single argument:

$ asciidoctor *.adoc

Your shell will automatically expand the pattern and interpret the command exactly as you had
typed it above:

$ asciidoctor a.adoc b.adoc

You can pass all AsciiDoc files inside direct subfolders using the glob operator (*) in place of the
directory name:

$ asciidoctor */*.adoc

To match all files in the current directory and direct subfolders, combine both glob patterns:

$ asciidoctor *.adoc */*.adoc

Since the globs in this command rely on shell expansion, the command is not portable across
platforms. To make it portable, you can allow the Asciidoctor CLI to expand the globs. To do so,
instruct the shell to not expand the glob by quoting the pattern, as shown here:
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$ asciidoctor '*.adoc' '*/*.adoc'

This time, the arguments *.adoc and */*.adoc are passed directly to Asciidoctor instead of being
expanded. Asciidoctor handles the glob matching in a manner that is portable across platforms.


If you process multiple nested AsciiDoc files at once and are also applying a
custom stylesheet to them, you’ll need to manage the stylesheet’s location.

But it gets better. The glob handling in Asciidoctor (which matches the rules of file globbing in
Ruby) is likely more powerful than what your shell offers. For example, you can match AsciiDoc
files in the current folder and in folders of any depth using the double glob operator (**).

$ asciidoctor '**/*.adoc'

Most shells do not honor the double glob pattern. Thus, to ensure both portability and flexibility
when specifying a glob pattern, always enclose the argument in quotes.

If you specify an output folder, the source folders are not preserved by default. To preserve the
folders, specify which portion of the path to remove using the -R flag:

$ asciidoctor -D out -R src 'src/**/*.adoc'

In this case, the folder structure under the src folder will be replicated.

You can use the special value . to indicate you want the folder structure of the source and output to
be mirrored exactly. For example:

$ asciidoctor -D out -R . '**/*.adoc'

If you find yourself pushing the boundaries of what can be achieved using the CLI to convert
multiple AsciiDoc files (including processing resources like images), consider switching to a build
tool like Maven or Gradle. Both tools provide excellent Asciidoctor integration. Refer to the
Asciidoctor Maven plugin or Asciidoctor Gradle plugin for details.

69.2. Specifying an Output File
By default, the CLI writes the converted output to the same directory as the input file and with the
same name as the input file, except with a file extension that matches the output format (e.g.,
replacing .adoc with .html). You can override this default and have the CLI write to a file and
directory of your choice.

There are several circumstances when you’ll want to specify a different output file:

• You want to write the output file to a different name, perhaps to append a qualifier such as a
version string.
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• You want to write the output file to a different directory.

• You are piping content to the CLI, but want to write the output to a file (in this case, an output
file is required).


By specifying an output file, you implicitly overwrite the output directory as well.
The output file will be resolved relative to the current working directory, not the
directory of the input file.

To specify the output file, you’ll use the -o option. For example, let’s say we want to convert
mydoc.adoc and write the output to a filename that includes the current date. You’d use:

$ asciidoctor -o mydoc-$(date +%Y-%m-%d).html mydoc.adoc

We could write it to another folder as well by prefixing the output file with a folder name:

$ asciidoctor -o build/mydoc-$(date +%Y-%m-%d).html mydoc.adoc

If you only want to specify the output directory, but let the filename be defaulted, use the -D option:

$ asciidoctor -D build mydoc.adoc

The -D option can also be used when processing multiple input files:

$ asciidoctor -D build *.adoc

If you are piping content to the CLI, the default is to write the output to STDOUT. If you want to
write the output to a file in this case, you have to specify one:

$ cat mydoc.adoc | asciidoctor -o build/mydoc-$(date +%Y-%m-%d).html -

You’ll learn more about piping content through the CLI in the next section.

69.3. Piping Content Through the CLI
Using the - flag, you can pipe content to the asciidoctor command. This flag tells Asciidoctor read
the source from standard input (STDIN). For example:

$ echo 'content' | asciidoctor -

 Any variation of STDIN will work.

325



This command is effectively the same as:

$ echo 'content' | asciidoctor -o - -

When reading source from STDIN, Asciidoctor doesn’t have a reference to an input file. Therefore,
it sends the converted text to standard output (STDOUT) by default.

If, instead, you want to write the full document to an output file, you specify it using the -o flag. For
example, the following command writes a standalone HTML document to output.html instead of
STDOUT:

$ echo "content" | asciidoctor -o output.html -

When you pipe content to the asciidoctor command, it no longer has a concept of where the
document is located. Therefore, relative references such as includes may not work as expected. To
resolve this problem, you should specify an absolute base directory using the -B option:

$ echo "content" | asciidoctor -B /path/to/basedir -o output.html -

Alternately, you can set an artificial document directory by passing an absolute path to the docdir
attribute:

$ echo "content" | asciidoctor -a docdir=/path/to/docdir -o output.html -

Try both approaches to determine which one suits your needs better.

When piping source from STDIN to STDOUT through the asciidoctor command, you often just want
the converted body (i.e., embeddable HTML). To produce that variant, add the -s flag:

$ echo 'content' | asciidoctor -s -

Or perhaps you want to include the doctitle as well:

$ echo -e '= Document Title\n\ncontent' | asciidoctor -s -a showtitle -
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Chapter 70. Running Asciidoctor Securely
Asciidoctor provides security levels that control the read and write access of attributes, the include
directive, macros, and scripts while a document is processing. Each level includes the restrictions
enabled in the prior security level.

UNSAFE A safe mode level that disables any security features enforced by Asciidoctor. Ruby is
still subject to its own restrictions.

This is the default safe mode for the CLI. Its integer value is 0.

SAFE This safe mode level prevents access to files which reside outside of the parent
directory of the source file. The include directive is enabled, but paths to include files
must be within the parent directory. This mode allows assets (such as the stylesheet)
to be embedded in the document.

Its integer value is 1.

SERVER A safe mode level that disallows the document from setting attributes that would
affect conversion of the document. This level trims docfile to its relative path and
prevents the document from:

• setting source-highlighter, doctype, docinfo and backend

• seeing docdir

It allows icons and linkcss.

Its integer value is 10.
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SECURE A safe mode level that disallows the document from attempting to read files from the
file system and including their contents into the document. Additionally, it:

• disables icons

• disables the include directive

• data can not be retrieved from URIs

• prevents access to stylesheets and JavaScripts

• sets the backend to html5

• disables docinfo files

• disables data-uri

• disables interactive (opts=interactive) and inline (opts=inline) modes for SVGs

• disables docdir and docfile

• disables source highlighting

Asciidoctor extensions may still embed content into the document depending
whether they honor the safe mode setting.

This is the default safe mode for the API. Its integer value is 20.

You can set Asciidoctor’s safe mode level using the CLI or API.

70.1. Set the Safe Mode in the CLI
When Asciidoctor is invoked via the CLI, the safe mode is set to UNSAFE by default. You can change
the safe level by executing one of the following commands in the CLI.

-S, --safe-mode=SAFE_MODE

Sets the safe mode level of the document according to the assigned level (UNSAFE, SAFE, SERVER,
SECURE).

--safe, asciidoctor-safe

Sets the safe mode level to SAFE. Provided for compatibility with the python AsciiDoc safe
command.

70.2. Set the Safe Mode in the API
The default safe level in the API is SECURE.

In the API, you can set the safe mode using a string, symbol or integer value. The value must be set
in the document constructor using the :safe option.

result = Asciidoctor.convert_file('master.adoc', :safe => 'server')
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or

result = Asciidoctor.convert_file('master.adoc', :safe => :server)

or

result = Asciidoctor.convert_file('master.adoc', :safe => 10)

70.3. Set Attributes Based on the Safe Mode
Asciidoctor provides access to the current safe mode through built-in attributes. You can use these
attributes to enable or disable content based on the current safe mode of the processor.

The safe mode can be referenced by one of the following attributes:

• The value of the safe-mode-name attribute (e.g., unsafe, safe, etc.)

• The value of the safe-mode-level attribute (e.g., 0, 10, etc.)

• The presense of the safe-mode-<name> attribute, where <name> is the safe mode name.

The attributes in the next example define replacement text for features that are disabled in high
security environments:

ifdef::safe-mode-secure[]
Link to chapters instead of including them.
endif::safe-mode-secure[]

This feature is particularly handy for displaying content on GitHub, where the safe mode is set to its
most restrictive setting, secure.
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Customizing Your Output
Asciidoctor provides a default stylesheet and built-in converters so you can quickly process and
convert your document, but it also lets you use custom stylesheets and converters. The Asciidoctor
project includes alternative stylesheet themes from the stylesheet factory and specialized backends.
You can also create your own themes and backends.
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Chapter 71. Applying a Theme
A custom stylesheet can be stored in the same directory as your document or in a separate
directory. Like the default stylesheet, you can have the output document link to your custom
stylesheet or embed it.

If the stylesheet is in the same directory as your document, you can apply it when converting your
document to HTML from the CLI.

$ asciidoctor -a stylesheet=mystyles.css mysample.adoc

1. Save your custom stylesheet in the same directory as mysample.adoc

2. Call the asciidoctor processor

3. Set -a (--attribute) and stylesheet

4. Assign the stylesheet file’s name to the stylesheet attribute

5. Enter your document file’s name.

Alternatively, let’s set the stylesheet attribute in the header of mysample.adoc.

= My First Experience with the Dangers of Documentation
:stylesheet: mystyles.css

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.
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When your document and the stylesheet are stored in different directories, you need to tell
Asciidoctor where to look for the stylesheet in relation to your document. Asciidoctor uses the
relative or absolute path you assign to the stylesdir attribute to find the stylesheet. Let’s move
mystyles.css into mydocuments/mystylesheets/. Our AsciiDoc document, mysample.adoc, is saved in the
mydocuments/ directory.

= My First Experience with the Dangers of Documentation
:stylesdir: mystylesheets/
:stylesheet: mystyles.css

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.

After processing mysample.adoc, its HTML output (mysample.html), which includes the embedded
mystyles.css stylesheet, is created in the mydocuments/ directory.

You can also set stylesdir in the CLI.

$ asciidoctor -a stylesdir=mystylesheets/ -a stylesheet=mystyles.css mysample.adoc

If you don’t want to embed the mystyles.css stylesheet into your HTML output, make sure to set
linkcss.
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= My First Experience with the Dangers of Documentation
:stylesdir: mystylesheets/
:stylesheet: mystyles.css
:linkcss:

In my world, we don't have to worry about mutant, script-injecting warlocks.
No.
We have something far worse.
We're plagued by Wolpertingers.

== Origins

You may not be familiar with these https://en.wikipedia.org/wiki/Wolpertinger[ravenous
beasts], but, trust me, they'll eat your shorts and suck the loops from your code.

After your document is converted, notice that a copy of mystyles.css was not created in the
mydocuments/ directory. Unlike when you link to the default Asciidoctor stylesheet, any custom
stylesheets you link to are not copied to the directory where your output is saved.
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Stylesheets and processing multiple nested documents

When you are running Asciidoctor once across a nested set of documents, it’s currently not
possible to specify a single relative path for the stylesdir attribute that would work for all of
the documents. This is because the relative depth of the stylesheet’s location differs for the
documents in the subdirectories. One way to solve this problem is to maintain the path to
stylesdir in each document.

Let’s say you have three AsciiDoc documents saved in the following directory structure:

/mydocuments
  a.adoc
  b.adoc
  /mynesteddocuments
    c.adoc
  /mystylesheets

For a.adoc and b.adoc, set stylesdir to:

:stylesdir: mystylesheets

For c.adoc, set stylesdir to:

:stylesdir: ../mystylesheets

If you’re serving your documents from a webserver, you can solve this problem by providing
an absolute path to the stylesheet.
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Chapter 72. Stylesheet Factory
The Asciidoctor stylesheet factory is where themes are developed for styling your documents.
Specifically, these stylesheets can be used to quickly customize the look and feel of HTML 5
documents generated by Asciidoctor.

To view the Asciidoctor themes in action, visit the theme showcase.


The Asciidoctor stylesheet factory is only compatible with Asciidoctor 0.1.2 and
greater.

72.1. Setting up the Factory
The stylesheets in the Asciidoctor stylesheet factory are built using Compass, a CSS authoring
framework that uses Sass to generate CSS files. The styles and components are generated by
Foundation 4, an awesome and flexible CSS component framework that ensures your stylesheet is
cross-browser and mobile friendly.

72.1.1. Install the Gems

In order to build the stylesheets, you must download the Asciidoctor stylesheet factory repository
and install the Compass and Foundation gems.

1. Download or clone the Asciidoctor stylesheet factory repository.

 It does not matter where you save the project on your system.

2. Make sure you have Ruby and RubyGems installed, and, ideally, Bundler.

3. Run Bundler to install the Compass and Foundation gems.

$ bundle install



The previous bundle command is equivalent to the following two commands:

$ gem install compass --version 0.12.2
$ gem install zurb-foundation --version 4.3.2

You don’t need to execute these gem install commands if you use Bundler.

Once you have the gems installed, you can build the stylesheets.

72.1.2. Build the Stylesheets

To build the stylesheets:
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1. Navigate to the Asciidoctor stylesheet factory directory on your system.

2. Run Compass’s compile command.

$ compass compile

The stylesheets are compiled from the Sass source files in the sass/ folder and written to the
stylesheets/ folder. You can reference the stylesheets in stylesheets/ from your HTML file.

72.2. Creating a Theme
You can create your own themes to apply to your documents.

Themes go in the sass/ folder. To create a new theme, let’s call it hipster, start by creating two new
files:

sass/hipster.scss

• Imports the theme settings, which includes default variables and resets

• Imports the AsciiDoc components

• Defines any explicit customization

sass/settings/_hipster.scss

• Sets variables that customize Foundation 4 and the AsciiDoc CSS components

Here’s a minimal version of sass/hipster.scss:

@import "settings/hipster";
@import "components/asciidoc";
@import "components/awesome-icons";

 You don’t have to include the underscore prefix when importing files.


The awesome-icons component is only applicable to HTML generated by Asciidoctor
> 0.1.2 with the icons attribute set to font.

You can add any explicit customization below the import lines.

The variables you can set in sass/settings/_hipster.scss are a combination of the Foundation 4 built-
in global settings and global settings and imports for the AsciiDoc components.

Once you’ve created your custom theme, it’s time to apply it to your document.

72.3. Applying a Stylesheet
Let’s practice applying a stylesheet to a simple AsciiDoc file.
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1. Create an AsciiDoc file like the one below.

2. Save the file as mysample.adoc.

= Introduction to AsciiDoc
Doc Writer <doc@example.com>

A preface about http://asciidoc.org[AsciiDoc].

== First Section

* item 1
* item 2

[source,ruby]
puts "Hello, World!"

Next, you’ll use the Asciidoctor processor to generate HTML and apply a stylesheet to it from the
stylesheets/ directory.

72.4. Generate an HTML Document
Now it’s time to pick the stylesheet you want to apply to your content when it is rendered. In your
file browser, navigate to the stylesheets/ directory. Or, using a console, change to the stylesheets/
directory and list the available stylesheets using the ls command.

$ ls

Console output of ls command

asciidoctor.css  foundation-lime.css    iconic.css       riak.css
colony.css       foundation-potion.css  maker.css        rubygems.css
foundation.css   golo.css               readthedocs.css

Let’s apply the colony.css stylesheet to the sample document.

1. Navigate to the directory where you saved mysample.adoc.

2. Call the asciidoctor processor.

3. Specify the stylesheet you want applied with the stylesheet attribute.

4. Tell the processor where the specified stylesheet is located with the stylesdir attribute.

$ asciidoctor -a stylesheet=colony.css -a stylesdir=../stylesheets mysample.adoc

Open a browser, navigate to mysample.html and checkout the result! If you inspect the
mysample.html document, you should see that the stylesheet is embedded in the converted
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document.

Stylesheet images

The Golo, Maker, and Riak themes include image assets. To apply these themes to your
document correctly, the applicable images must be copied into the same directory as the
generated output.

For example, to apply the maker.css stylesheet to mysample.adoc:

1. Copy body-bh.png from the images/maker/ directory into the output directory.

2. Call the stylesheet and styledir attributes.

$ asciidoctor -a stylesheet=maker.css -a stylesdir=../stylesheets
mysample.adoc

Navigate to mysample.html in your browser. The body-bh.png image should add a graph
paper-like background to your generated output.

72.5. External Preview
You may want to preview sample HTML files on another computer or device. To do that, you need
to serve them through a web server. You can quickly serve HTML files in the root directory of the
project using the following command:

Using Python

$ python -m SimpleHTTPServer 4242

or

Using Ruby >= 1.9.3

$ ruby -run -e httpd . -p 4242

338



Chapter 73. Slide Decks
In addition to generating normal documents from AsciiDoc (e.g., a book or article), you can also use
AsciiDoc to create HTML-based slide decks. The converters for creating HTML-based slides add
some additional structure rules to the document for defining slides. However, nothing in this
structure restricts you from still being able to publish the content as a normal document too.

The conversion from AsciiDoc to an HTML-based slide deck is handled by one of the following
converters from the Asciidoctor ecosystem:

• Asciidoctor Reveal.js — Converts an AsciiDoc document into a Reveal.js presentation

• Asciidoctor Bespoke — Converts an AsciiDoc document into a Bespoke presentation

There’s also a converter for making deck.js slide decks, but we discourage using it as deck.js itself is
very outdated.
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Chapter 74. Custom Backends

74.1. Storing Multiple Templates
Custom templates can be stored in multiple directories. That means you can build on an existing
backend by copying only the templates you want to modify. Then, just pass both the directory
holding the original templates and the directory containing your customized templates when you
invoke Asciidoctor.

In the CLI, multiple template directories are specified by using the -T option multiple times.

$ asciidoctor -T /path/to/original/templates -T /path/to/modified/templates
mysample.adoc

In the API, multiple template directories are specified by passing an array to the template_dirs
option:

Asciidoctor.convert_file 'mysample.adoc', safe: :safe
    template_dirs: %w(/path/to/original/templates /path/to/modified/templates)
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Chapter 75. Using Asciidoctor with Other
Languages
The built-in labels, messages, and syntax keywords in Asciidoctor are English by default. However,
Asciidoctor is not restricted to working with English-only content. Asciidoctor can process the full
range of the UTF-8 character set. That means you can write your document in any language, save
the file with UTF-8 encoding, and expect Asciidoctor to convert the text properly. Furthermore, you
can customize the built-in labels (e.g., “Appendix”) to match the language in which you are writing.

There are some caveats to know about:

• Currently, the official HTML and PDF converters only fully support left-to-right (and top-to-
bottom) reading. Support for right-to-left (RTL) is being worked on. See issue #1601 for details.
In the interim, you can leverage the DocBook toolchain to get right-to-left support.

• Attributes that store dates and times (e.g., docdatetime) are always formatted like 2019-01-04
19:26:06 GMT+0000.

• Message (aka logging) strings are always in English.

• Asciidoctor does not support the language conf files used by AsciiDoc Python. However,
Asciidoctor does provide a translation file that can be used for a similar purpose.

75.1. Translating built-in labels
When converting to DocBook, you can rely on the DocBook toolchain to translate (most) built-in
labels. To activate this feature, simply set the lang attribute to a valid country code (which defaults
to en for English). For example:

$ asciidoctor -a lang=es -b docbook article.adoc

The list of supported languages, as well as additional language considerations for DocBook, are
described in DocBook XSL: The Complete Guide.

The lang attribute does not enable automatic translation of built-in labels when converting directly
to HTML or PDF. It’s merely a hint to configure the DocBook toolchain. If you’re not using the
DocBook toolchain for publishing, you must translate each built-in label yourself. One way is to set
the following attributes in the document header or by passing the attributes via the API or CLI:

Attributes that control built-in labels

Attribute name Used for Default

appendix-caption Appendix titles. Appendix

caution-caption CAUTION admonitions (when icons
are not in use).

Caution
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Attribute name Used for Default

chapter-label Prefix added to chapter titles (i.e.,
level-1 section titles when doctype is
book). (pdf converter only)

Chapter

example-caption Example titles. Example

figure-caption Automatically prefixed to figure titles. Figure

important-caption IMPORTANT admonitions (when icons
are not in use).

Important

last-update-label Label for when the document was last
updated.

Last updated

listing-caption The label for listing blocks. By default,
listing blocks do not have captions. If
you specify listing-caption, then you
also turn on captions for listing blocks.

not set

manname-title Label for the program name section in
the man page.

NAME

note-caption NOTE admonitions (when icons are
not in use).

Note

preface-title Title text used for the anonymous
preface (when the doctype is book).

not set

table-caption Automatically prefixed to table titles. Table

tip-caption TIP admonitions (when icons are not
in use).

Tip

toc-title Title of the table of contents. Table of Contents

untitled-label The document title, for documents
that have only body content.

Untitled

version-label The label preceding the revnumber in
the document’s byline.

Version

warning-caption WARNING admonitions (when icons
are not in use).

Warning

If you plan to support multiple languages, you’ll want to define the attributes for each language
inside a conditional preprocessor directive. For example:

ifeval::["{lang}" == "de"]
:caution-caption: Achtung
...
endif::[]

Of course, you’re probably hoping this has already been done for you. Indeed, it has!
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You can find an AsciiDoc file in the Asciidoctor repository that provides translations of these
attributes for most major languages. The translations are defined using AsciiDoc attribute entries
inside conditional preprocessor blocks, just as suggested above.

To use this file to translate the built-in labels according to the value of the lang attribute (just like
the DocBook toolchain does), follow these steps:

1. Download the AsciiDoc file attributes.adoc from the Asciidoctor repository.

2. Put the file in the folder locale relative to your document.

3. Add the following line to the header of your AsciiDoc document:

include::locale/attributes.adoc[]

4. Set the language using the lang attribute. This attribute must be set before the include directive
gets processed. For example:

-a lang=es

The built-in labels will now be translated automatically based on the value of the lang attribute.

There’s an ongoing discussion about how to make language support even simpler (issue #1129).
Input is welcome.

75.2. Translation
Asciidoctor (or DocBook) currently does not support translation of content out of the box. There’s a
proposal to integrate gettext (discussion), but suggestions are welcome.
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Publishing Your Content
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Chapter 76. Static Website Generators

76.1. Front Matter Added for Static Site Generators
Many static site generators (i.e., Jekyll, Middleman, Awestruct) rely on "front matter" added to the
top of the document to determine how to convert the content. Front matter typically starts on the
first line of a file and is bounded by block delimiters (e.g., ---).

Here’s an example of a document that contains front matter:

---  ①
layout: default ②
---  ①
= Document Title

content

① Front matter delimiters

② Front matter data

The static site generator removes these lines before passing the document to the AsciiDoc processor
to be converted. Outside of the tool, however, these extra lines can throw off the processor.

If the skip-front-matter attribute is set via the CLI or API (e.g., -a skip-front-matter), Asciidoctor (as
of 0.1.4) will recognize the front matter and consume it before parsing the document. Asciidoctor
stores the content it removes in the front-matter attribute to make it available for integrations.
Asciidoctor also removes front matter when reading include files.


Awestruct can read front matter directly from AsciiDoc attributes defined in the
document header, thus eliminating the need for this feature.

76.1.1. Configuring Attributes for Awestruct

Awestruct defines a set of default attributes that it passes to the API in its /default-site.yml file. One
of the attributes in that configuration is imagesdir. The value there is set to /images. That means the
value in your document is skipped due to the precedence rules.

Fortunately, there is one additional place you can override the attribute. This gives you the
opportunity to set your own default and to flip the precedence order so that the document wins out.
If an attribute value that is passed to the API ends with an @ symbol, it makes that assignment have
a lower precedence than an assignment in the document.

You can define attributes you want to pass to the API in the _config/site.yml file. Here’s an example
entry for Asciidoctor:
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asciidoctor:
  :safe: safe
  :attributes:
    imagesdir: /assets/images@
    icons: font
    ...


The second-level keys (safe and attributes, in this case) must have colons on both
sides of the key name. The rest of the keys only have a colon after the key.

With this configuration added, you should observe that the imagesdir attribute in your document is
now respected.
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Using Asciidoctor’s API
In addition to the command line interface, Asciidoctor provides a Ruby API. The API is intended for
integration with other software projects and is suitable for server-side applications, such as Rails,
Sinatra and GitHub.

Asciidoctor also has a Java API that mirrors the Ruby API. The Java API calls through to the Ruby
API using an embedded JRuby runtime. See the AsciidoctorJ project for more information.
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Chapter 77. Require the Library
To use Asciidoctor in your application, you first need to require the gem:

require 'asciidoctor'

This statement makes all of the public APIs in Asciidoctor available to your script or application.
You are now ready to start processing AsciiDoc documents.

The main entry points in the Asciidoctor API are the static methods to load or convert AsciiDoc
documents, which we’ll cover the next two chapters.
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Chapter 78. Load and Convert Files
To parse a file into an Asciidoctor::Document object:

doc = Asciidoctor.load_file 'mysample.adoc'

You can get information about the document:

puts doc.doctitle
puts doc.attributes

More than likely, you will want to convert the document. To convert a file containing AsciiDoc
markup to HTML 5, use:

Asciidoctor.convert_file 'mysample.adoc'

The command will output to the file mysample.html in the same directory.

You can convert the file to DocBook 5.0 by setting the :backend option to 'docbook':

Asciidoctor.convert_file 'mysample.adoc', backend: 'docbook'

The command will output to the file mysample.xml in the same directory. If you’re on Linux, you
can view the file using Yelp.
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Chapter 79. Load and Convert Strings
To parse an AsciiDoc-formatted string into a document object model, use:

doc = Asciidoctor.load '*This* is Asciidoctor.'

To convert the AsciiDoc-formatted string instead, use:

puts Asciidoctor.convert '*This* is Asciidoctor.'

When converting a string, Asciidoctor does not output a standalone document by default. Instead, it
generates embeddable output. Let’s learn why that is and how to control it.

79.1. Embeddable output
When you pass a string to Asciidoctor.convert to convert it to a backend format, such as HTML, this
method only returns the converted content for those blocks. It does not include the shell around
that content (i.e., the header and footer) that is needed to make a standalone document. Instead, it
makes an embeddable document. This default was chosen to make Asciidoctor consistent with other
lightweight markup processors like Markdown.

Here’s what’s included in an embeddable document:

• The document title, but only if the showtitle attribute is set (no attribution and revision
information)

• The table of contents if the toc attribute is enabled (and not macro or preamble)

• The converted document body

• The footnotes unless the nofootnotes attribute is set

You can still generate a standalone document when converting a string. To go from an AsciiDoc
string to a standalone output document, you need to explicitly set the :header_footer option to true.

puts Asciidoctor.convert '*This* is Asciidoctor.', header_footer: true

Now you’ll get back a full HTML 5 file.

You can get the same behavior when converting a file by setting the :header_footer option to false.
However, most of the time you’ll want to generate a standalone document when converting a file
(which is the default).

Another way to implicitly enable the shell is to output the result to a file. In this case, the default
output behavior changes from embeddable to standalone.
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puts Asciidoctor.convert '*This* is Asciidoctor.', to_file: 'out.html'

When converting a string, the TOC is only included by default when using the :header_footer option
as shown above. However, you can force it to be included without the header and footer by setting
the toc attribute with a value of macro and using the toc::[] macro in the string itself.

79.2. Convert inline markup only
If you only want the inline markup to be returned, set the :doctype option to 'inline':

puts Asciidoctor.convert '*This* is Asciidoctor.', :doctype => 'inline'

In this mode, Asciidoctor will only process the first block (e.g., paragraph) in the document and
ignore the rest.

79.3. Convert to DocBook
You can produce DocBook 5.0 by setting the backend option to 'docbook'. Since embeddable DocBook
isn’t that useful, we also enable the shell (i.e., header and footer) by setting the :header_footer
option to true.

puts Asciidoctor.convert '*This* is Asciidoctor.', :header_footer => true,
  :backend => 'docbook'

Let’s say you don’t like some (or all) of the output that Asciidoctor produces. That’s no problem. You
can change it. And yes, any of it! Let’s find out how to customize the output Asciidoctor spits out in
the next chapter.
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Chapter 80. Generate an HTML TOC
Asciidoctor’s HTML 5 converter has built-in support for generating a TOC. This TOC generator can
also be used as a general purpose API. This logic is available via the outline method on the HTML5
converter.

The outline method excepts a Document object and an optional Hash of options, and returns an
HTML string. It can be resolved and invoked from anywhere using the following:

html_toc = (Asciidoctor::Converter.for 'html5').outline document

The method can also be executed from inside a converter template (e.g., Slim, Haml, or ERB). When
using a composite converter, this call will be run through the converter chain.

= converter.convert document, 'outline'

The method is also available through the Document API:

html_doc = document.converter.convert document, 'outline'

The outline method accepts the following options:

sectnumlevels

the number of section levels to number (defaults to the value of the sectnumlevels attribute.

toclevels

the depth of the toc (defaults to the value of the toclevels attribute)
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Chapter 81. Provide Custom Templates
Asciidoctor allows you to override the converter methods used to convert almost any individual
AsciiDoc element. If you provide a directory of Tilt-compatible templates, named in such a way that
Asciidoctor can figure out which template goes with which element, Asciidoctor will use the
templates in this directory instead of its built-in templates for any elements for which it finds a
matching template. It will fallback to its default templates for everything else.

puts Asciidoctor.convert '*This* is Asciidoctor.', :header_footer => true,
  :template_dir => 'templates'

The Document and Section templates should begin with document and section, respectively. The file
extension is used by Tilt to determine which view framework it will use to use to interpret the
template. For instance, if you want to write the template in ERB, you’d name these two templates
document.html.erb and section.html.erb. The first file extension, .html, maps to the converter and
the second, .erb maps to the template engine. To use Haml as the template engine, you’d name the
templates document.html.haml and section.html.haml.

Templates for block elements, like a paragraph or sidebar, are named after the block they handle.
For instance, to override the default paragraph template with an ERB template, put a file named
paragraph.html.erb in the template directory you pass to the Document constructor using the
:template_dir option.

For more usage examples, see the asciidoctor-backends, the O’Reilly htmlbook project and the
(massive) test suite.
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Extensions
Extensions have proven to be central to the success of AsciiDoc because they open up the language
to new use cases. However, the way extensions are implemented in AsciiDoc Python presents a
number of problems:

• They are challenging to write because they work at such a low-level (read as: nasty regular
expressions).

• They are fragile since they often rely on system commands to do anything significant.

• They are hard to distribute due to the lack of integration with a formal distribution system.

Asciidoctor addresses these issues by introducing a proper extension API that offers a superset of
the extension points that AsciiDoc Python provides. As a result, extensions in Asciidoctor are easier
to write, more powerful, and simpler to distribute.

The goal for Asciidoctor has always been to allow extensions to be written using the full power of a
programming language (whether it be Ruby, Java, Groovy or JavaScript), similar to what we’ve done
with the backend (conversion) mechanism. That way, you don’t have to shave yaks to get the
functionality you want, and you can distribute the extension using defacto-standard packaging
mechanisms like RubyGems or JARs.



The extension API in Asciidoctor is stable with the exception of inline macros.
Since inline content is not parsed until the convert phase, the inline macro
processor must return converted text (e.g., HTML) rather than an AST node. Once
Asciidoctor is changed to process inline content during the parse phase, the inline
macro processor will need to return an inline node. When that switch occurs,
there will either be some sort of adapter or required migration for inline macro
processors, but that has yet to be determined.
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Chapter 82. Extension Points
Here are the extension points that are available in Asciidoctor 0.1.4.

Preprocessor

Processes the raw source lines before they are passed to the parser.

TreeProcessor

Processes the Asciidoctor::Document (AST) once parsing is complete.

Postprocessor

Processes the output after the document has been converted, but before it’s written to disk.

DocinfoProcessor

Adds additional content to the header or footer regions of the generated document.

Block processor

Processes a block of content marked with a custom block style (i.e., [custom]). (similar to an
AsciiDoc filter)

Block macro processor

Registers a custom block macro and processes it (e.g., gist::12345[]).

Inline macro processor

Registers a custom inline macro and processes it (e.g., [ Save ]).

Include processor

Processes the include::<filename>[] directive.

These extensions are registered per document using a callback that feels sort of like a DSL:

Asciidoctor::Extensions.register do |document|
  preprocessor FrontMatterPreprocessor
  tree_processor ShellSessionTreeProcessor
  postprocessor CopyrightFooterPostprocessor
  docinfo_processor TrackingCodeDocinfoProcessor if document.basebackend? 'html'
  block ShoutBlock
  block_macro GistBlockMacro if document.basebackend? 'html'
  inline_macro ManInlineMacro
  include_processor UriIncludeProcessor
end



Extension classes must be defined outside of the register block. Once an extension
class is registered, it is frozen, preventing further modification. If you define an
extension class inside the register block, it will result in an error on subsequent
invocations.
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You can register more than one processor of each type, though you can only have one processor per
custom block or macro. Each registered class is instantiated when the Asciidoctor::Document is
created.


There is currently no extension point for processing a built-in block, such as a
normal paragraph. Look for that feature in a future Asciidoctor release.
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Chapter 83. Example Extensions
Below are several examples of extensions and how they are registered.

83.1. Preprocessor Example
Purpose

Skim off front matter from the top of the document that gets used by site generators like Jekyll
and Awestruct.

sample-with-front-matter.adoc

---
tags: [announcement, website]
---
= Document Title

content

[subs="attributes,specialcharacters"]
.Captured front matter
....
---
{front-matter}
---
....
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FrontMatterPreprocessor

require 'asciidoctor'
require 'asciidoctor/extensions'

class FrontMatterPreprocessor < Asciidoctor::Extensions::Preprocessor
  def process document, reader
    lines = reader.lines # get raw lines
    return reader if lines.empty?
    front_matter = []
    if lines.first.chomp == '---'
      original_lines = lines.dup
      lines.shift
      while !lines.empty? && lines.first.chomp != '---'
        front_matter << lines.shift
      end

      if (first = lines.first).nil? || first.chomp != '---'
        lines = original_lines
      else
        lines.shift
        document.attributes['front-matter'] = front_matter.join.chomp
        # advance the reader by the number of lines taken
        (front_matter.length + 2).times { reader.advance }
      end
    end
    reader
  end
end

Usage

Asciidoctor::Extensions.register do
  preprocessor FrontMatterPreprocessor
end

Asciidoctor.convert_file 'sample-with-front-matter.adoc', :safe => :safe

83.2. Tree Processor Example
Purpose

Detect literal blocks that contain shell commands, strip the prompt character and style the
command using CSS in such a way that the prompt character cannot be selected (as seen on
help.github.com).
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sample-with-shell-session.adoc

 $ echo "Hello, World!"
 > Hello, World!

 $ gem install asciidoctor

ShellSessionTreeProcessor

class ShellSessionTreeProcessor < Asciidoctor::Extensions::TreeProcessor
  def process document
    return unless document.blocks?
    process_blocks document
    nil
  end

  def process_blocks node
    node.blocks.each_with_index do |block, i|
      if block.context == :literal &&
          (((first_line = block.lines.first).start_with? '$ ') ||
            (first_line.start_with? '> '))
        node.blocks[i] = convert_to_terminal_listing block
      else
        process_blocks block if block.blocks?
      end
    end
  end

  def convert_to_terminal_listing block
    attrs = block.attributes
    attrs['role'] = 'terminal'
    prompt_attr = (attrs.has_key? 'prompt') ?
        %( data-prompt="#{block.sub_specialchars attrs['prompt']}") : nil
    lines = block.lines.map do |line|
      line = block.sub_specialchars line.chomp
      if line.start_with? '$ '
        %(<span class="command"#{prompt_attr}>#{line[2..-1]}</span>)
      elsif line.start_with? '&gt; '
        %(<span class="output">#{line[5..-1]}</span>)
      else
        line
      end
    end
    create_listing_block block.document, lines * EOL, attrs, subs: nil
  end
end
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Usage

Asciidoctor::Extensions.register do
  treeprocessor ShellSessionTreeProcessor
end

Asciidoctor.convert_file 'sample-with-shell-session.adoc', :safe => :safe

83.3. Postprocessor Example
Purpose

Insert copyright text in the footer.

CopyrightFooterPostprocessor

class CopyrightFooterPostprocessor < Asciidoctor::Extensions::Postprocessor
  def process document, output
    content = (document.attr 'copyright') || 'Copyright Acme, Inc.'
    if document.basebackend? 'html'
      replacement = %(<div id="footer-text">\\1<br>\n#{content}\n</div>)
      output = output.sub(/<div id="footer-text">(.*?)<\/div>/m, replacement)
    elsif document.basebackend? 'docbook'
      replacement = %(<simpara>#{content}</simpara>\n\\1)
      output = output.sub(/(<\/(?:article|book)>)/, replacement)
    end
    output
  end
end

Usage

Asciidoctor::Extensions.register do
  postprocessor CopyrightFooterPostprocessor
end

Asciidoctor.convert_file 'sample-with-copyright-footer.adoc', :safe => :safe

83.4. Docinfo Processor Example
Purpose

Appends the Google Analytics tracking code to the bottom of an HTML document.
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GoogleAnalyticsDocinfoProcessor

class GoogleAnalyticsDocinfoProcessor < Asciidoctor::Extensions::DocinfoProcessor
  use_dsl
  at_location :footer
  def process document
    return unless (ga_account_id = document.attr 'google-analytics-account')
    %(<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create','#{ga_account_id}','auto');
ga('send','pageview');
</script>)
  end
end

Usage

Asciidoctor::Extensions.register do
  docinfo_processor GoogleAnalyticsDocinfoProcessor
end

Asciidoctor.convert_file 'sample.adoc', :safe => :safe,
    :attributes => 'UA-ABCXYZ123'

83.5. Block Processor Example
Purpose

Register a custom block style named shout that uppercases all the words and converts periods to
exclamation points.

sample-with-shout-block.adoc

[shout]
The time is now. Get a move on.
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ShoutBlock

require 'asciidoctor'
require 'asciidoctor/extensions'

class ShoutBlock < Asciidoctor::Extensions::BlockProcessor
  PeriodRx = /\.(?= |$)/

  use_dsl

  named :shout
  on_context :paragraph
  name_positional_attributes 'vol'
  parse_content_as :simple

  def process parent, reader, attrs
    volume = ((attrs.delete 'vol') || 1).to_i
    create_paragraph parent, (reader.lines.map {|l| l.upcase.gsub PeriodRx, '!' *
volume }), attrs
  end
end

Usage

Asciidoctor::Extensions.register do
  block ShoutBlock
end

Asciidoctor.convert_file 'sample-with-shout-block.adoc', :safe => :safe

83.6. Compound Block Processor Example
Purpose

Register a custom block named collapsiblelisting that transforms a listing block into a
compound block composed of the following:

• an example block with the collapsible option enabled

• the original listing block

• the listing block is promoted to a source block if a language is specified using the second
positional attribute.
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sample-with-collapsiblelisting-block.adoc

.Show JSON
[collapsiblelisting,json]
----
{
   "foo": "bar"
}
----

CollapsibleListingBlock

class CollapsibleListingBlock < Asciidoctor::Extensions::BlockProcessor
  enable_dsl
  on_context :listing
  positional_attributes 'language'

  def process parent, reader, attrs
    lang = attrs.delete 'language'
    attrs['title'] ||= 'Show Listing'
    example = create_example_block parent, [], attrs, content_model: :compound
    example.set_option 'collapsible'
    listing = create_listing_block example, reader.readlines, nil
    if lang
      listing.style = 'source'
      listing.set_attr 'language', lang
      listing.commit_subs
    end
    example << listing
    example
  end
end

Asciidoctor::Extensions.register do
  block CollapsibleListingBlock, :collapsiblelisting
end

Usage

$ asciidoctor -r ./collapsiblelisting.rb sample-with-collapsiblelisting-block.adoc


This extension mimics the builtin collapsible option on the example block, but
consolidates it to a single block. The purpose of this extension is to show how to
assemble a compound block in an extension.

83.7. Block Macro Processor Example
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Purpose

Create a block macro named gist for embedding a gist.

sample-with-gist-macro.adoc

.My Gist
gist::123456[]

GistBlockMacro

require 'asciidoctor'
require 'asciidoctor/extensions'

class GistBlockMacro < Asciidoctor::Extensions::BlockMacroProcessor
  use_dsl

  named :gist

  def process parent, target, attrs
    title_html = (attrs.has_key? 'title') ?
        %(<div class="title">#{attrs['title']}</div>\n) : nil

    html = %(<div class="openblock gist">
#{title_html}<div class="content">
<script src="https://gist.github.com/#{target}.js"></script>
</div>
</div>)

    create_pass_block parent, html, attrs, subs: nil
  end
end

Usage

Asciidoctor::Extensions.register do
  block_macro GistBlockMacro if document.basebackend? 'html'
end

Asciidoctor.convert_file 'sample-with-gist.adoc', :safe => :safe

83.8. Inline Macro Processor Example
Purpose

Create an inline macro named man that links to a man page.
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sample-with-man-link.adoc

See man:gittutorial[7] to get started.

ManpageInlineMacro

require 'asciidoctor'
require 'asciidoctor/extensions'

class ManInlineMacro < Asciidoctor::Extensions::InlineMacroProcessor
  use_dsl

  named :man
  name_positional_attributes 'volnum'

  def process parent, target, attrs
    text = manname = target
    suffix = ''
    target = %(#{manname}.html)
    suffix = if (volnum = attrs['volnum'])
      "(#{volnum})"
    else
      nil
    end
    parent.document.register :links, target
    %(#{(create_anchor parent, text, type: :link, target: target).convert}#{suffix})
  end
end

Usage

Asciidoctor::Extensions.register do
  inline_macro ManInlineMacro
end

Asciidoctor.convert_file 'sample-with-man-link.adoc', :safe => :safe

83.9. Include Processor Example
Purpose

Include a file from a URI.


Asciidoctor supports including content from a URI out of the box if you set the
allow-uri-read attribute (not available if the safe mode is secure).
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sample-with-uri-include.adoc

:source-highlighter: coderay

.Gemfile
[source,ruby]
----
include::https://raw.githubusercontent.com/asciidoctor/asciidoctor/master/Gemfile[]
----

UriIncludeProcessor

require 'asciidoctor'
require 'asciidoctor/extensions'
require 'open-uri'

class UriIncludeProcessor < Asciidoctor::Extensions::IncludeProcessor
  def handles? target
    (target.start_with? 'http://') or (target.start_with? 'https://')
  end

  def process doc, reader, target, attributes
    content = (open target).readlines
    reader.push_include content, target, target, 1, attributes
    reader
  end
end

Usage

Asciidoctor::Extensions.register do
  include_processor UriIncludeProcessor
end

Asciidoctor.convert_file 'sample-with-uri-include.adoc', :safe => :safe

You can see plenty more extension examples in the extensions lab.
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Build Integrations and
Implementations
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Chapter 84. Java
AsciidoctorJ is the official library for running Asciidoctor on the JVM. Using AsciidoctorJ, you can
convert AsciiDoc content or analyze the structure of a parsed AsciiDoc document from Java and
other JVM languages. For details see Getting Started with Asciidoctor in Java using AsciidoctorJ.
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Chapter 85. Gradle
The Asciidoctor Gradle Plugin is the official means of using Asciidoctor to convert all your AsciiDoc
documentation using Gradle. For details see Getting Started with the Asciidoctor Gradle Plugin.
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Chapter 86. Maven
The Asciidoctor Maven Plugin is the official way to convert your AsciiDoc documentation using
Asciidoctor from an Apache Maven build. For details see Installing and Using the Asciidoctor Maven
Plugin.
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Chapter 87. Apache Ant
The asciidoctor-ant task is an all-in-one solution for running Asciidoctor from Ant. It is based on
AsciidoctorJ and JRuby, both of which are encapsulated in a single jar file.

Usage is:

<project xmlns:asciidoctor="antlib:org.asciidoctor.ant">
...
    <target name="doc">
        <taskdef uri="antlib:org.asciidoctor.ant"
           resource="org/asciidoctor/ant/antlib.xml"
           classpath="lib/asciidoctor-ant.jar"/>
        <asciidoctor:convert sourceDirectory="src/asciidoc" outputDirectory="target"/>
    </target>
...
</project>

For more details, see asciidoctor-ant on GitHub.

371

https://github.com/asciidoctor/asciidoctor-ant#asciidoctor-ant-task


Chapter 88. JavaDoc
Using the Asciidoctor doclet, you can write your Javadoc comments using all the features of
Asciidoctor including tables, lists, code examples with syntax highlighting, and pictures.

If you want to incorporate your Javadoc into another document instead, there is an experimental
doclet that exports them to AsciiDoc files. See the exportdoclet project and the related discussion
thread for details.
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Chapter 89. JavaScript
Asciidoctor.js is a JavaScript port of Asciidoctor, transpiled directly from the Ruby version.
Asciidoctor.js brings the AsciiDoc syntax to the browser and the Node.js ecosystem. For details see
Installing and Using Asciidoctor.js.
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Conversions and Migrations
In this part, you’ll learn how to migrate documents written in other documentation languages to
AsciiDoc. We’ll start with the simplest migration, switching from AsciiDoc Python, the original
implementation of AsciiDoc, to Asciidoctor, the modern implementation. We’ll then cover how to
move to AsciiDoc from other documentation languages like DocBook, Markdown and HTML. In
addition to differences in the syntax, many of the sections also suggest tools you can use to ease the
migration.
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Chapter 90. Migrating from AsciiDoc Python
The purpose of this section is to help you migrate legacy AsciiDoc documents written for AsciiDoc
Python to the modern AsciiDoc syntax supported by Asciidoctor and to learn about equivalent tools
and extensions.

The differences are minor, so most documents will need very few changes, if any. Once you’ve
made the necessary changes, this section also describes how to take advantage of the new features
provided in Asciidoctor.


This section specifically covers migration from AsciiDoc Python 8 to Asciidoctor
1.5.x. The content assumes you’ve already updated any content that is deprecated
as of AsciiDoc Python 8.

90.1. Command Line Interface
Asciidoctor was designed from the outset to be a (much faster) drop-in replacement for AsciiDoc
Python. For most documents, you can simply replace the call to AsciiDoc Python:

$ asciidoc document.adoc

with an equivalent call to Asciidoctor:

$ asciidoctor -a compat-mode document.adoc

If you run into trouble, check out the differences below, namely Deleted and Deprecated Syntax and
Attributes.


Keep in mind you can also run Asciidoctor on the JVM using AsciidoctorJ or with
JavaScript using Asciidoctor.js.

90.1.1. Help Topics

In both AsciiDoc Python and Asciidoctor, the --help CLI option shows the command usage by
default. They differ in how they handle the optional topic argument.

In AsciiDoc Python, the --help syntax topic shows a syntax cheatsheet and the --help manpage topic
shows a plaintext version of the man page.

Asciidoctor only supports the manpage help topic. However, it outputs the formatted man page
rather than the plaintext version. Therefore, to view it, you need to pipe the result to the man
command as follows:

$ asciidoctor --help manpage | man /dev/stdin
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or

$ asciidoctor --help manpage | man -l -

If you want to view the plaintext version, you can route the output through the col command as
follows:

$ asciidoctor --help manpage | man -l - | col -bx

You can also view the man page for Asciidoctor online at asciidoctor(1).

To get help with the AsciiDoc syntax in Asciidoctor, refer to the AsciiDoc Syntax Quick Reference.

90.1.2. Configuration Files

Asciidoctor does not use .conf files or filters, so --conf-file, --dump-conf, and --filter are not
implemented. Asciidoctor provides an extension API that replaces the configuration-based
extension and filter mechanisms in AsciiDoc Python.

90.1.3. Internationalization

AsciiDoc Python has built-in .conf files that are used to translate built-in labels. You load the .conf
file for a given language by setting the lang attribute to a supported language code (e.g., -a
lang=<language code>). In Asciidoctor, you must define the translations for these labels explicitly.
See Using Asciidoctor with Other Languages for details.

90.1.4. Themes

AsciiDoc Python provides a theming mechanism that encapsulates CSS, JavaScript and images. The
--theme option activates one of these themes, which is resolved from your home directory. In
Asciidoctor, you control the theme using CSS (i.e., a stylesheet) only, which you can specify using -a
stylesheet=<stylesheet>.

If you require more advanced theming, you can inject additional resources using a docinfo file or
use a postprocessor extension.

90.1.5. Default HTML Backend

AsciiDoc Python uses XHTML 1.1 as its default output (the xhtml11 backend), though it supports
HTML5 output as well (the html5 backend). Asciidoctor defaults to creating HTML5 output (the
html5 backend), which closely adheres to the backend by the same name in AsciiDoc Python. The
web has moved forward since AsciiDoc Python was created, so the switch to HTML5 is
recommended anyway.

90.1.6. Doctest

AsciiDoc Python --doctest runs units tests. See Tests for how to run the Asciidoctor unit tests.
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Asciidoctor also has a doctest tool which you can use when creating custom HTML or XML-based
converters.

90.2. Changed Syntax
These changes are not backward-compatible, but if you set the compat-mode attribute, Asciidoctor
will accept the AsciiDoc Python syntax. For the long term, you should update to the Asciidoctor
syntax. Consult the Migration Guide to get the full details and learn how to migrate smoothly.

AsciiDoc syntax affected by compat mode

Feature AsciiDoc Python (or
Asciidoctor in compat mode)

Asciidoctor (no compat mode)

italic text 'italic text' or _italic text_ _italic text_

monospaced text +monospaced text+ `monospaced text`

monospaced text (literal) `{asciidoc-version}` `+{asciidoc-version}+`

``double quotes'' ``double quotes''
not available in compat mode

"`double quotes`" or insert the
Unicode quote characters using
your editor

`single quotes' `single quotes'
not available in compat mode

'`single quotes`' or insert the
Unicode quote characters using
your editor

Document title [1] Title or = Title
=====

= Title

[1] Asciidoctor accepts the two-line heading style to set the document title. However, by using it, you
implicitly set compat-mode. If you want to use the new Asciidoctor syntax, make sure to use the
single-line style for the document title or unset the compat-mode attribute explicitly.

The following changes are not affected by the compat-mode attribute:

AsciiDoc syntax not affected by compat mode

Feature AsciiDoc Python Asciidoctor

Underlined titles Underline length must
match title length +/- 2
characters.

Underline length must match title length +/- 1
character (Underlined titles are deprecated
anyway. See Sections.)

ifeval::[] Evaluates any Python
expression.

Evaluates simple logical expressions testing the
value of attributes. See ifeval directive.

Block delimiters Delimiter lines do not
have to match in
length.

The length of start and end delimiter lines must
match exactly.

AsciiDoc table cell a| or asciidoc| a| only

Table cell separator A Python regular
expression.

One or more literal characters or \t for tab.
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90.3. Deleted and Deprecated Syntax and Attributes
These are attributes that either no longer exist, work differently, or have better alternatives.

Deleted and deprecated syntax and attributes

AsciiDoc Python Asciidoctor Notes

big, small,
underline,
overline, line-
through, colors

deprecated Character attributes to apply formatting directly. Usually
better to apply a role, then apply the formatting based on
that role by using a stylesheet.

halign, valign for
table cells

Column and cell
specifiers

See Cell Formatting.

infile not implemented Provides the name and directory of the current document.
(Distinct from docfile, because infile may be an included
document, and docfile is always the master document.)
No Asciidoctor equivalent.

indir

asciidoc asciidoctor AsciiDoc Python sets asciidoc to show that it is the current
processor. Asciidoctor sets asciidoctor instead.

toc2 toc Combined in a single attribute, see Table of Contents.
toc-placement

toc-position

options="pgwide" not implemented DocBook attribute to make tables full page width,
whatever the current indent. No Asciidoctor equivalent.

options="unbreak
able"

In Asciidoctor, this only works for tables, not paragraphs.

plaintext not implemented AsciiDoc Python uses this to suppress inline substitutions
and retain block indents when importing large blocks of
plain text. Asciidoctor deliberately does not implement it;
the closest Asciidoctor equivalent is a passthrough block.

replacements2 post_replacements Renamed.

presubs - Not required.

showcomments not implemented In AsciiDoc Python, turns single line comments into
DocBook <remark> elements. Asciidoctor considers this an
inappropriate use of comments. If you want to send
remarks to the output, use an extension, or:

 ifdef::showcomments+basebackend-docbook[]
 ++++
 <remark>Your comment here</remark>
 ++++
 endif::[]
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AsciiDoc Python Asciidoctor Notes

specialwords not implemented In AsciiDoc Python, applies special formatting to named
text. In Asciidoctor this could be implemented using an
extension.

tabsize (in-
document and
include directive)

in-document only AsciiDoc Python replaces tabs with spaces in all text, using
a default tab size of 8. Asciidoctor only replaces tabs with
spaces in verbatim content blocks (listing, literal, etc), and
the attribute has no default. In other words, tabs are not
expanded in verbatim content blocks unless this attribute
is set on the block or the document. For all other text,
Asciidoctor tabs are fixed at 4 spaces by the CSS. See
Normalize Block Indentation for more detail.

90.4. Default HTML Stylesheet
You’ll notice that the AsciiDoc Python and Asciidoctor stylesheets look quite different. However,
they are compatible (for the most part) since the formatting is based on the same HTML structure
and CSS classes. If you happen to prefer the AsciiDoc Python stylesheet, you can use it by copying it
from the AsciiDoc Python stylesheets directory and instructing Asciidoctor to apply it using:

$ asciidoctor -a stylesheet=asciidoc.css document.adoc



Keep in mind that the default stylesheet in Asciidoctor is just that, a default. If you
don’t like its appearance, you can either customize it or choose another stylesheet.
You can find a collection of alternative themes in the Asciidoctor Stylesheet
Factory.



Unlike AsciiDoc Python, Asciidoctor loads some resources from a CDN. It’s possible
to configure Asciidoctor to load all resources from local files. For instance, you can
unset the webfonts attribute so that the generated HTML does not use fonts from
Google Fonts. There are similar attributes to control how additional resources are
resolved.

90.5. Mathematical Expressions
Both AsciiDoc Python and Asciidoctor can convert embedded LaTeX and AsciiMath expressions
(e.g., asciimath:[expression], latexmath:[expression], etc), but with Asciidoctor you need to activate
STEM support first using the stem attribute (see Activating stem support).

For block content, AsciiDoc Python uses a [latex] style delimited block. In Asciidoctor, use a stem
passthrough block instead. See Block Stem Content.
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90.6. AsciiDoc Python Extensions
The extension mechanism is completely different in Asciidoctor, but the ‘standard’ extensions have
been re-implemented, so they should work with minor changes.

Standard extensions

AsciiDoc Python Asciidoctor

source • You can choose from a number of highlighters Syntax Highlighting Source
Code.

• Highlighters are built-in, not separately installed.

• src_numbered, src_tab, args are not implemented directly, but check the
highlighter you are using for what features it has and how to configure
them.

music Not implemented.

latex (block
macro)

Use a stem passthrough block Block Stem Content.

graphviz Incorporated into Asciidoctor Diagram.

90.7. Custom Extensions
AsciiDoc Python custom extensions will not work with Asciidoctor because AsciiDoc Python
extensions are essentially Python commands, and the Asciidoctor extensions are Ruby (or Java)
classes. To re-write your extensions, see Extensions.

90.8. Features Introduced by Asciidoctor

90.8.1. New Syntax

Asciidoctor has shorthand for id, role, style and options. See Setting Attributes on an Element for
details.

The following longhand syntax in AsciiDoc Python:

[[id]]
[style,role="role",options="option1,option2"]

can be written using the shorthand supported by Asciidoctor:

[style#id.role%option1%option2]

The longhand forms still work, but you should use the new forms for future compatibility,
convenience and readability.
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90.8.2. Enhancements

There are lots of new features and improvements Asciidoctor. These are some of the more
interesting ones when migrating:

• Partial includes

• Additional safe modes

• Icon-based fonts and inline icons

• Asciidoctor Diagram

A detailed list of the improvements is shown in Differences between Asciidoctor and AsciiDoc
Python.

90.8.3. Recommended Practices

See the AsciiDoc Style Guide and Recommended Practices for ways to make your documents clearer
and more consistent.
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Chapter 91. Convert DocBook XML to
AsciiDoc
One of the things Asciidoctor excels at is converting AsciiDoc source into valid and well-formed
DocBook XML content.

What if you’re in the position where you need to go the other way: migrate all your legacy DocBook
XML content to AsciiDoc? The prescription (℞) you need to get rid of your DocBook pains could be
DocBookRx.

DocBookRx is an early version of a DocBook to AsciiDoc converter written in Ruby. This converter is
far from perfect at the moment, but it improves with each document it converts.

The plan is to evolve it into a robust library for performing this conversion in a reliable way. You
can read more about this initiative in the README.

The best thing about this tool is all the active users who are putting it through its paces. The more
advanced the DocBook XML this tool tackles, and the more feedback we receive, the better the tool
will become. Use it today to escape from XML hell!
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Chapter 92. Convert Markdown to AsciiDoc
Asciidoctor recognizes a fair amount of Markdown syntax, thus allowing you to migrate from
Markdown to AsciiDoc gradually. See Markdown Compatibility to learn what syntax is shared. The
syntax you must change is listed in A selection of AsciiDoc language features compared to
Markdown.

383

https://asciidoctor.org/docs/asciidoc-syntax-quick-reference/#markdown-compatibility


Chapter 93. Convert Confluence XHTML to
AsciiDoc
You can convert Atlassian Confluence XHTML pages to Asciidoctor using this Groovy script.

The script calls Pandoc to convert single or multiple HTML files exported from Confluence to
AsciiDoc files. You’ll need Pandoc installed before running this script.


If you have trouble running this script, you can use the Pandoc command
referenced inside the script to convert XHTML files to AsciiDoc manually.

convert.groovy

link:https://gist.githubusercontent.com/melix/6020336/raw/059d83a3dae933de71d585c3f6b2
29a3c62fa857/convert.groovy[]

The script is designed to be run locally on HTML files or directories containing HTML files exported
from Confluence.

Usage

1. Save the script contents to a convert.groovy file in a working directory.

2. Make the file executable according to your specific OS requirements.

3. Place individual files, or a directory containing files into the working directory.

4. Run groovy convert filename.html to convert a single file.

5. Confirm the output file meets requirements

6. Recurse through a directory by using this command pattern: groovy convert directory/*.html

This script was created by Cédric Champeau (melix). You can find the source of this script hosted at
this GitHub Gist.

384

http://www.groovy-lang.org/download.html
https://pandoc.org/
https://gist.github.com/melix
https://gist.github.com/melix/6020336


Chapter 94. Convert MS Word to AsciiDoc
See Migrating to AsciiDoc from MS Word.

385

https://asciidoctor.org/docs/migrating-from-msword


Resources

386



Chapter 95. Copyright and License
Copyright © 2012-2018 Dan Allen, Sarah White, and Ryan Waldron. Free use of this software is
granted under the terms of the MIT License.

See the LICENSE file for details.
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Chapter 96. Authors
Asciidoctor was written by Dan Allen, Sarah White, Ryan Waldron, Jason Porter, Nick Hengeveld
and other contributors.

The initial code from which Asciidoctor emerged was written by Nick Hengeveld to process the git
man pages for the Git project site. Refer to the commit history of asciidoc.rb to view the initial
contributions.

AsciiDoc was written by Stuart Rackham and has received contributions from many other
individuals.
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Chapter 97. Troubleshooting
1. Part way through the document, the blocks stop rendering correctly. What went wrong?

When content is not rendered as you expect in the later part of a document, it’s usually due to a
delimited block missing its closing delimiter line. The most devious culprit is the open block. An
open block doesn’t have any special styling, but its contents have the same restrictions as other
delimited blocks, i.e. it can not contain section titles.

To solve this problem, first look for missing delimiter lines. Syntax highlighting in your text
editor can help with this. Also look at the rendered output to see if the block styles are
extending past where you intended. When working with open blocks, you may need to add
custom styles (such as a red border) to the class openblock so you can see its boundaries.

2. Why don’t URLs containing underscores (_) or carets (^) work after they’re converted?

This problem occurs because the markup parser interprets parts of the URL (i.e., the link target)
as valid text formatting markup. Most lightweight markup languages have this issue because
they don’t use a grammar-based parser. Asciidoctor plans to handle URLs more carefully in the
future (see issue #281), which may be solved by moving to a grammar-based parser (see issue
#61). Thankfully, there are many ways to include URLs of arbitrary complexity using the
AsciiDoc passthrough mechanisms.

Solution A

The simplest way to get a link to behave is to assign it to an attribute.

= Document Title
:link-with-underscores: https://asciidoctor.org/now_this__link_works.html

This URL has repeating underscores {link-with-underscores}.

Asciidoctor won’t break links with underscores when they are assigned to an attribute
because inline formatting markup is substituted before attributes. The URL remains
hidden while the rest of the document is being formatted (strong, emphasis, monospace,
etc).
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Solution B

Another way to solve formatting glitches is to explicitly specify the formatting you want to
have applied to a span of text. This can be done by using the inline pass macro. If you want
to display a URL, and have it preserved, put it inside the pass macro and enable the macros
substitution, which is what substitutes links.

This URL has repeating underscores
pass:macros[https://asciidoctor.org/now_this__link_works.html].

The pass macro removes the URL from the document, applies the macros substitution to the
URL, and then restores the processed URL to its original location once the substitutions are
complete on the whole document.

Alternatively, you can use ++ around the URL only. However, when you use this approach,
Asciidoctor won’t recognize it as a URL any more, so you have to use the explicit link
prefix.

This URL has repeating underscores
link:++https://asciidoctor.org/now_this__link_works.html++[].

For more information, see issue #625.
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Glossary
admonition

a callout paragraph or block that has a label or icon indicating its priority.

backend

a moniker for the expected output format; used as a key to select which converter to use; often
used interchangeably with the name of a converter (i.e., the "html5" backend").

block attribute

an attribute associated with a delimited block or paragraph; these attributes can affect
processing of the block, and are available to block processors, but cannot be referenced using an
attribute reference.

built-in attribute

a document attribute that controls processing, integrations, styling, and localization.

cross reference

a link from one location in the document to another location marked by an anchor.

document attribute

an attribute associated with the document (node); in other words, an attribute in the global
document attributes dictionary; the value of these attributes can be referenced using an
attribute reference; if defined in the header, the document attribute is known as a header
attribute.

environment attribute

a dynamic document attribute that pertains to, or gives information about, the runtime
environment.

header attribute

a document attribute defined in the document header; visible from all nodes in the document;
often required for global settings such as the source highlighter or icons mode.

list continuation

a plus sign (+) on a line by itself that connects adjacent lines of text to a list item.

macro attribute

an attribute associated with a block or inline macro; these attributes can affect processing of the
macro, and are available to macro processors, but cannot be referenced using an attribute
reference.

predefined attribute

a document attribute defined for convenience; often used for inserting special content
characters.
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quoted text

text which is enclosed in special punctuation to give it emphasis or special meaning.

user-defined attribute

a document attribute defined by the content author; used for storing reusable content, and
controlling conditional inclusion.
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Appendix A: Catalog of Document Attributes
This appendix catalogs all the recognized document attributes in Asciidoctor. It includes
environment, built-in and predefined (aka character reference) attributes. Authors may define any
number of additional attributes (aka user-defined attributes) for their own purposes.

A.1. Environment Attributes
Asciidoctor automatically assigns values to various document attributes whenever a document is
loaded or converted. These attributes, termed environment attributes, provide information about
the runtime environment, such as how, where and when the document is being processed. Like
other document attributes, environment attributes can be referenced whereever attribute
references are permitted. It’s recommended that you treat these attributes as read only.

Environment attributes

Attribute Description Example Value

asciidoctor Set if the current processor is Asciidoctor.

asciidoctor-version Asciidoctor version. 2.0.10

backend Backend used to create the output file. html5

basebackend The backend value minus any trailing numbers.
For example, if the backend is docbook5, the
basebackend is docbook.

html

docdate Last modified date of the source document.[1,2] 2019-01-04

docdatetime Last modified date and time of the source
document.[1,2]

2019-01-04 19:26:06
UTC

docdir Full path of the directory that contains the
source document.

/home/user/docs

docfile Full path of the source document. /home/user/docs/usergu
ide.adoc

docfilesuffix File extension of the source document, including
the leading period. Introduced in 1.5.6.

.adoc

docname Root name of the source document (no leading
path or file extension).

userguide

doctime Last modified time of the source document.[1,2] 19:26:06 UTC

doctype Document type (article, book or manpage). article

docyear Year that the document was last modified.[1,2] 2018

embedded Set if content is being converted to an
embeddable document (body only).

filetype File extension of the output file name (without
leading period).

html
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Attribute Description Example Value

htmlsyntax Syntax used when generating the HTML output
(html or xhtml).

html

localdate Date when the document was converted.[2] 2019-02-17

localdatetime Date and time when the document was
converted.[2]

2019-02-17 19:31:05
UTC

localtime Time when the document was converted.[2] 19:31:05 UTC

localyear Year when the document was converted.[2] 2018

outdir Full path of the output directory. /home/user/docs/dist

outfile Full path of the output file. /home/user/docs/dist/u
serguide.html

outfilesuffix File extension of the output file (starting with a
period) as determined by the backend (.html for
html, .xml for docbook, etc.). (The value is not
updated to match the file extension of the output
file when one is specified explicitly). Safe to
modify.

.html

safe-mode-level Numeric value of the safe mode setting.
(UNSAFE=0, SAFE=10, SERVER=10, SECURE=20).

20

safe-mode-name Textual value of the safe mode setting. SERVER

safe-mode-unsafe Set if the safe mode is UNSAFE.

safe-mode-safe Set if the safe mode is SAFE.

safe-mode-server Set if the safe mode is SERVER.

safe-mode-secure Set if the safe mode is SECURE.

user-home Home directory of the current user. Resolves to .
if the safe mode is SERVER or greater.

/home/user

[1] Only reflects the last modified time of the source document file. It does not consider the last
modified time of files which are included.

[2] If the SOURCE_DATE_EPOCH environment variable is set, the value assigned to this attribute is
built from a UTC date object that corresponds to the timestamp (as an integer) stored in that
environment variable. This override offers one way to make the conversion reproducible. See
https://reproducible-builds.org/specs/source-date-epoch/ for more information about the
SOURCE_DATE_EPOCH environment variable. Otherwise, the date is expressed in the local time
zone, which is reported as a time zone offset (e.g., -0600) or UTC if the time zone offset is 0). To force
the use of UTC, set the TZ=UTC environment variable when invoking Asciidoctor.

A.2. Built-in Attributes
Built-in document attributes can be set anywhere in the document using an attribute entry line.
However, there are some rules to keep in mind regarding the impact of that assignment.
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• Many attributes can only be defined in the document header (or via the API or CLI). Otherwise,
they won’t have the desired impact. These are called header attributes. This requirement is
marked in the table below.

• To set an attribute that does not accept a value, simply use an empty value (as indicated by
empty in the table).

• If you set an attribute from the command line or API, it’s defined for the whole document and
cannot be changed in the body unless @ is added to the end of the value. (The one exception to
this rule is the sectnums attribute, which can always be changed).

• If you set an attribute in the body (anywhere after the document header), the attribute is visible
from the point it is set until it is unset (assuming it is not locked as a result of being set from the
command line or API).


Several attributes from AsciiDoc Python have been removed (or deprecated) in
Asciidoctor and therefore are not included in this section. See Migrating from
AsciiDoc Python if you are updating an older document.

Built-in document attributes

Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

Compliance

attribute-missing Controls how missing
references are handled.

skip skip, drop,
drop-line or
warn

[catch-a-
missing-or-
undefined-
attribute]

attribute-
undefined

Controls how expressions
that undefine an attribute
are handled.

drop-line drop or drop-
line

[catch-a-
missing-or-
undefined-
attribute]

compat-mode Controls whether the legacy
parser is used to parse the
document.

not set
(Modern
parser is
used).

empty
(Legacy
parser is
used).

Migrating
from
AsciiDoc
Python

experimental Enable experimental
extensions. The features
behind this attribute are
subject to change and may
even be removed in a future
version. Currently enables
the UI macros (button, menu
and kbd).

not set empty  User
Interface
Macros
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

reproducible If set, prevents the last-
updated date from being
added to the HTML footer or
DocBook info element.
Alternatively, you can use
the SOURCE_DATE_EPOCH
environment variable to fix
the value. Useful if you want
to store the output in a
source code control system
as it prevents spurious
changes every time you
convert the document.

not set empty 

Internationalization and numbering

appendix-caption Sets the text used to prefix
appendix titles.

Appendix any Appendix,
Translating
built-in labels

appendix-number Stores the number (aka
letter) for the current
appendix.[2]

A letter

appendix-refsig Sets the signifier added to
the title of appendices in
cross reference text. Unset to
disable.

Appendix any Book Parts
and Chapters,
Sections,
Translating
built-in labels

caution-caption Sets the text used to label
CAUTION admonitions when
icons are not enabled.

Caution any Admonition,
Translating
built-in labels

chapter-number Stores the number for the
current chapter.[2]

2 integer

chapter-refsig Sets the signifier added to
the title of numbered
chapters in cross reference
text. Unset to disable.

Chapter any Book Parts
and Chapters,
Sections,
Translating
built-in labels
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

chapter-label Sets the prefix added to
chapter titles (i.e., level-1
section titles when doctype
is book). (pdf converter only)

Chapter any Book Parts
and Chapters,
Sections,
Translating
built-in labels

example-caption Sets the text used to label
example blocks.

Example any Translating
built-in labels

example-number Stores the number for the
current numbered example.
[2]

5 integer

figure-caption Sets the text used to label
figures.

Figure any Images,
Translating
built-in labels

figure-number Stores the number for the
current numbered figure.[2]

3 integer

important-caption Sets the text used to label
IMPORTANT admonitions
when icons are not enabled.

Important any Admonition,
Translating
built-in labels

lang Set the value of the lang
attribute on the root
element of the output
document.

en Valid XML
country code

 Translating
built-in labels

last-update-label Text label for the “Last
updated” time in the footer.
Unsetting it will remove the
label and time from the
footer.

Last updated any  Footer
docinfo files,
Translating
built-in labels

listing-caption Sets the text used to label
listing blocks.

not set any Translating
built-in labels

listing-number Stores the number for the
current numbered listing.[2]

5 integer

manname-title Label for the program name
section in the man page.

NAME any  Translating
built-in labels

nolang Prevents the lang attribute
from being added to root
element of the output
document.

not set empty 
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

note-caption Sets the text used to label
NOTE admonitions when
icons are not enabled.

Note any Admonition,
Translating
built-in labels

preface-title Sets the title text for an
anonymous preface when
the doctype is book.

not set any Preface

section-refsig Sets the signifier added to
the title of numbered
sections in cross reference
text. Unset to disable.

Section any Book Parts
and Chapters,
Sections,
Translating
built-in labels

table-caption Text of the label that is
automatically prefixed to
table titles. To turn off table
caption labels and numbers,
add the table-caption
attribute to the document
header with an empty value.

Table any Translating
built-in labels

table-number Stores the number for the
current numbered table.[2]

5 integer

tip-caption Sets the text used to label
TIP admonitions when icons
are not enabled.

Tip any Admonition,
Translating
built-in labels

toc-title Title for the table of
contents.

Table of
Contents

any Table of
Contents,
Translating
built-in labels

untitled-label Used as the default
document title if the
document does not have a
document title.

Untitled any  Translating
built-in labels

version-label The label preceding the
revnumber in a converted
document’s byline

Version any  Revision
Number, Date
and Remark,
Translating
built-in labels
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

warning-caption Sets the text used to label
TIP admonitions when icons
are not enabled.

Warning any Translating
built-in labels

Header and metadata

app-name Application name (for
mobile devices). If set, adds
an application-name meta
element inside the HTML
document head.

not set any 

author Sets the document’s main
author. Can be set
automatically via the author
info line.

not set any  Header

authorinitials Sets the author’s initials
(e.g., JD). Derived
automatically from the
author attribute by default.

not set any  Header

authors Sets the document authors
as a comma-separated list.
Can be set automatically via
the author info line. If set,
adds an author meta element
inside the HTML document
head.

not set any  Metadata

copyright If set, adds a copyright meta
element inside the HTML
document head.

not set any  Metadata

doctitle Sets the document title. Set
automatically to section title
if document begins with
level-0 section.

Based on
content.

any  Document
Title

description If set, adds a description
meta element inside the
HTML document head.

not set any  Metadata
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

email Sets the author’s email
address. Can be set
automatically via the author
info line. Can be any inline
macro, such as a URL.

not set any  Header

favicon Adds a link to a favicon to
the HTML <head>.

not set any  Favicon

firstname Sets the author’s first name.
Can be set automatically via
the author info line.

not set any  Header

front-matter If skip-front-matter is set
via the CLI or API, any
YAML-style frontmatter
skimmed from the top of the
document is stored in this
attribute.

Front matter
content, if
captured.

any  Front Matter
Added for
Static Site
Generators

keywords If set, adds a keywords meta
element inside the HTML
document head.

not set any  Metadata

lastname Sets the author’s last name.
Can be set automatically via
the author info line.

not set any  Header

middlename Sets the author’s middle
name or initial. Can be set
automatically via the author
info line.

not set any  Header

orgname If set, add an <orgname>
element with this value to
the DocBook info element.

not set any  Metadata

revdate Sets the revision date. Can
be set automatically via the
revision info line.

not set any  Header

revremark Sets the revision description.
Can be set automatically via
the revision info line.

not set any  Header

revnumber Sets the revision number.
Can be set automatically via
the revision info line.

not set any  Header
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

title Sets the value of the <title>
element in the HTML <head>
or main DocBook <info> of
the output document. Also
used as a fallback when the
document title is not
specified. Since this is a
reserved attribute that has
special behavior, you should
avoid using it for any other
purpose!

not set any  Document
Title

Section titles and table of contents

idprefix Sets prefix used for auto-
generated section IDs.

_ Valid XML ID
start
character.

 Auto-
generated IDs

idseparator Sets word separator used in
auto-generated section IDs.

_ Valid XML ID
character.

 Auto-
generated IDs

leveloffset Pushes the level of
subsequent headings down,
to make file inclusion more
useful.

0 (+/-)0–5. (A
leading + or -
makes it
relative).

Partitioning
large
documents
and using
leveloffset

sectanchors If set, adds an anchor in
front of the section title
when the mouse cursor
hovers over it.

not set (No
anchors).

empty  Anchors

sectids If set, generates and assigns
an ID to any section that
does not have one.

empty
(Assigns
section ID if
not
specified).

empty  Auto-
generated IDs

sectlinks Turns section titles into self-
referencing links.

not set empty  Links

sectnums If set, numbers sections to
depth specified by
sectnumlevels.

not set
(Sections are
not
numbered).

empty  Numbering
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

sectnumlevels controls the depth of section
numbering

3 0–5  Numbering
depth

title-separator The character used to
separate the main title and
subtitle in the document
title.

: any  Subtitle
Partitioning

toc Switches the table of
contents on, and defines its
location.

not set auto, left,
right, macro
or preamble

 Table of
Contents

toclevels Maximum section level to
display.

2 1–5  Table of
Contents

fragment Hints to parser that
document is a fragment and
it should not enforce proper
section nesting.

not set empty

General content and formatting

asset-uri-scheme Controls which protocol is
used for assets hosted on a
CDN.

https empty, http or
https



cache-uri If set, cache content read
from URIs.

not set empty  Caching URI
Content

data-uri Embed graphics as data-uri
elements in HTML elements
so the file is completely self-
contained.

not set
(Images are
linked, not
embedded).

empty  Managing
Images

docinfo Read input from one or
more DocBook info files.

not set Comma-
separated list
of the
following
values:
shared,
private,
shared-head,
private-head,
shared-footer
or private-
footer

 Naming
docinfo files
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

docinfodir The location where docinfo
files are resolved.

The base
directory.

Directory  Locating
docinfo files

docinfosubs The AsciiDoc substitutions
that get applied to docinfo
content.

attributes Comma-
separated list
of
substitution
names. Set
value to
empty or none
to disable
substitutions.

 Attribute
substitution
in docinfo
files

doctype Set the output document
type.

article article, book,
inline or
manpage

 Document
Types

eqnums Controls automatic equation
numbering on LaTeX blocks
in HTML output (MathJax).
If the value is AMS, only
LaTeX content enclosed in
an
\begin{equation}...\end{equ
ation} container will be
numbered. If the value is all,
then all LaTeX blocks will be
numbered.

not set
(Equation
numbering is
off)

empty (alias
for AMS),
AMS, all or
none

 Equations
and
Formulas,
Equation
numbering in
MathJax

hardbreaks Preserve hard line breaks in
the input.

not set empty Line Breaks

hide-uri-scheme Hides the URI scheme for all
raw links.

not set empty URLs

linkattrs Parse attributes inside the
link macro. Removed in
Asciidoctor 1.5.7. Attributes
are now parsed
automatically if an equal
sign is found after a comma
(e.g., [link
text,window=_blank]).

not set (Do
not parse).

empty URLs
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

media Specifies the media type of
the output, which may
enable behavior specific to
that media type.

screen screen or
print



nofooter Suppresses output of the
footer.

not set empty  Footer
docinfo files

nofootnotes Turn off display of footnotes. not set empty  Footnotes

noheader Suppresses output of the
header.

not set empty  Header

outfilesuffix File extension of the output
file (starting with a period).

Determined
by the
backend
(.html for
html, .xml for
docbook, etc).

File extension Navigating
Between
Source Files

pagewidth Page width, used to calculate
the absolute width of tables
in the DocBook output.

425 Number 

relfileprefix The path prefix to add to
relative xrefs.

empty Path segment Navigating
Between
Source Files

show-link-uri Prints the URI of a link after
the linked text. (pdf
converter only)

not set empty 

showtitle If set, displays an embedded
document’s title. Mutually
exclusive with the notitle
attribute.

not set empty  Document
Title

stem Enables mathematics
processing or sets the
processor used.

not set empty
(defaults to
asciimath),
asciimath or
latexmath

 Inline Stem
Content

tabsize If set, converts tabs to spaces
in verbatim content blocks
(e.g., listing, literal).

not set 0 or more -
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

webfonts Control whether webfonts
are loaded, and which ones,
when using the default
stylesheet. The value
populates the family query
string parameter in the
Google Fonts URL.

empty (use
default fonts)

empty or a
Google Fonts
collection
spec

 Applying a
Theme and
issue #410

xmlns The XML namespace to add
to the DocBook 4.5
document. (The DocBook 5
document always declares a
namespace).

not set empty (alias
for the
DocBook
namespace)
or a valid
XML
namespace.

 DocBook

xrefstyle The formatting style to apply
to cross reference text.
Introduced in 1.5.6.

not set full, short, or
basic

 Customizing
the Cross
Reference
Text

Images and icons

iconfont-cdn Overrides the CDN used to
resolve the Font Awesome
stylesheet. Only used when
icons attribute is set to font.

cdnjs URI  Icons

iconfont-name Overrides the name of the
icon font stylesheet. Only
used when icons attribute is
set to font.

font-
awesome

any  Icons

iconfont-remote If set, allows use of a CDN
for resolving the icon font.
Only used when icons
attribute is set to font.

empty empty  Icons

icons Chooses icons instead of text
for admonitions.

not set
(image)

font or image  Icons

iconsdir Where icons are stored.
Only used when icons
attribute is set to image.

{imagesdir}/i
cons (or
./images/icon
s if imagesdir
is not set)

Directory  Icons
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

icontype File type for image icons.
Only used when icons
attribute is set to image.

png any, but
typically jpg,
tiff, etc.

 Icons

imagesdir Where image files are
resolved.

not set (Same
directory as
document).

Directory Images

Code highlighting and formatting

coderay-css Controls whether CodeRay
uses CSS classes or inline
styles.

class class or style  CodeRay

coderay-linenums-
mode

Sets how CodeRay inserts
line numbers into source
listings.

table table or
inline

 CodeRay

coderay-
unavailable

If set, tells the processor not
to attempt to load CodeRay.

not set empty  CodeRay

highlightjsdir Location of the highlight.js
source code highlighter
library.

not set Directory  highlight.js

highlightjs-theme Sets the name of the theme
used by the highlight.js
source code highlighter.

github A style name
recognized
by
highlight.js.

 highlight.js

prettifydir Location of the prettify
source code highlighter
library.

not set (Uses
CDN).

Directory  Syntax
Highlighting
Source Code

prettify-theme Sets the name of the theme
used by the prettify source
code highlighter.

prettify A style name
recognized
by prettify.

 Syntax
Highlighting
Source Code

prewrap Wrap wide code listings. Sets
the default behavior only;
you can still switch off
wrapping on specific
listings.

empty (Code
listing will
wrap long
lines, not
scroll).

empty To Wrap or to
Scroll

pygments-css Controls whether Pygments
uses CSS classes or inline
styles.

class class or style  Pygments
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

pygments-
linenums-mode

Sets how Pygments inserts
line numbers into source
listings.

table table or
inline

 Pygments

pygments-style Sets the name of the style
used by the Pygments source
code highlighter

default A style name
recognized
by Pygments.

 Pygments

pygments-
unavailable

If set, tells the processor not
to attempt to load Pygments.

not set empty  Pygments

source-highlighter Source code highlighter to
use.

not set coderay,
highlightjs,
prettify or
pygments

 Syntax
Highlighting
Source Code

source-indent Normalize block indentation
in code listings.

not set
(Indentation
is not
modified).

Number Normalize
Block
Indentation

source-language Set the default language for
source code listings.

not set Code
language
name in
lowercase.

Syntax
Highlighting
Source Code

source-linenums-
option

Turns on line numbers
option by default for source
code listings. Introduced in
1.5.6.

not set empty Syntax
Highlighting
Source Code

HTML styling

copycss If set, copy the CSS files to
the output.

empty (File is
copied if
linkcss is
set).

Empty or the
location of
the custom
stylesheet (if
used)

 Applying a
Theme

css-signature If set, assign the value to the
id attribute of the <body>
element (HTML only). The
preferred approach is to
assign an ID to the
document title.

not set Valid XML ID 
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

linkcss If set, link to the stylesheet
instead of embedding it.
Cannot be unset in SECURE
safe mode.

not set (when
safe mode <
SECURE)
set (when
safe mode is
SECURE)

empty  Styling the
HTML with
CSS

max-width Constrain the maximum
width of the document body.
Not recommended. Use
custom CSS instead.

not set CSS length
(e.g. 55em,
12cm, etc)



stylesdir Location for resolving CSS
stylesheets.

. (Same
directory as
document).

Directory  Creating a
Theme

stylesheet Name of a CSS stylesheet to
replace the default one.

not set (The
default
stylesheet is
used).

File name  Applying a
Theme

toc-class The CSS class on the table of
contents container.

toc Valid CSS
class name

 Table of
Contents

Manpage attributes (relevant only when using the manpage doctype and/or converter)

mantitle Metadata for manpage
output.

Based on
content.

any  Man Pages

manvolnum Metadata for manpage
output.

Based on
content.

any  Man Pages

manname Metadata for manpage
output.

Based on
content.

any  Man Pages

manpurpose Metadata for manpage
output.

Based on
content.

any  Man Pages

man-linkstyle Style the links in the
manpage output.

blue R <> Link format
sequence

 Man Pages

mansource The source (e.g., application
and version) to which the
man page pertains.

not set any  Man Pages

manmanual Manual name displayed in
the man page footer.

not set any  Man Pages

Secure attributes (can only be set from the command line or API, typically for security
reasons)
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Attribute name Description Default
value[1]

Allowed
values

He
ade

r
onl

y

See also

allow-uri-read If set, allows data to be read
from URIs (via include
directive, image macro
when embedding images,
etc.).

not set empty CLI
or

API

Include
Content from
a URI

max-attribute-
value-size

Limits the maximum size (in
bytes) of a resolved attribute
value. Since attributes can
reference other attributes, it
would be possible to create
an output document
disproportionately larger
than the input document
without this limit in place.

4096 (secure
mode), not set
(other modes)

0 or greater CLI
or

API

max-include-depth Safety feature to curtail
infinite include loops and to
limit the opportunity to
exploit nested includes to
compound the size of the
output document.

64 0 or greater CLI
or

API

Include
Directive

skip-front-matter If set, consume YAML-style
frontmatter at the top of the
document and store it in the
front-matter attribute.

not set empty CLI
or

API

Front Matter
Added for
Static Site
Generators

[1] The default value isn’t necessarily the value you will get by entering {name}. It may be the fallback
value which Asciidoctor uses if the attribute is not defined. The effect is the same either way.

[2] The -number attributes are created and managed automatically by Asciidoctor for numbered
blocks. They are only used if the corresponding -caption attribute is set (e.g., listing-caption) and
the block has a title. In the current version of Asciidoctor, setting the -number attributes will
influence the number used for subsequent numbered blocks of that type. However, you should not
rely on this behavior as it may change in future versions.

A.3. Predefined Attributes for Character Replacements
Predefined attributes for character replacements [1][2][3]

Attribute name Replacement text Appearance

blank nothing
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Attribute name Replacement text Appearance

empty nothing

sp single space

nbsp &#160;  

zwsp[4] &#8203;

wj[5] &#8288; 

apos &#39; '

quot &#34; "

lsquo &#8216; ‘

rsquo &#8217; ’

ldquo &#8220; “

rdquo &#8221; ”

deg &#176; °

plus &#43; +

brvbar &#166; ¦

vbar | |

amp & &

lt < <

gt > >

startsb [ [

endsb ] ]

caret ^ ^

asterisk * *

tilde ~ ~

backslash \ \

backtick ` `

two-colons :: ::

two-semicolons ;; ;;

cpp C++ C++

[1] Some replacements are Unicode characters, whereas others are numeric character references
(e.g., &#34;). These character references are used whenever the use of the Unicode character could
interfere with the AsciiDoc syntax or confuse the renderer (i.e., the browser). It’s up to the
converter to transform the reference into something the renderer understands (something both the
man page and PDF converter handle).

[2] Asciidoctor does not prevent you from reassigning predefined attributes. However, it’s best to
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treat them as read-only unless the output format requires the use of a different encoding scheme.
These attributes are an effective tool for decoupling content and presentation.

<sup>[3]</sup> Asciidoctor allows you to use any of the named character references (aka named
entities) defined in HTML (e.g., &amp;euro; resolves to &euro;). However, using named character
references can cause problems when generating non-HTML output such as PDF because the lookup
table needed to resolve these names may not be defined. Our recommendation is avoid using
named character references&#8212;&#8203;with the exception of those defined in XML (i.e., lt, gt,
amp, quot and apos). Instead, use numeric character references (e.g., &amp;#8364;).

[4] The Zero Width Space (ZWSP) is a code point in Unicode that shows where a long word can be
split if necessary.

[5] The word joiner (WJ) is a code point in Unicode that prevents a line break at its position.
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Appendix B: CLI Options

B.1. Security Settings
-B, --base-dir=DIR

Base directory containing the document and resources. Defaults to the directory containing the
source file, or the working directory if the source is read from a stream. When combined with
the safe mode setting, can be used to chroot the execution of the program.

-S, --safe-mode=SAFE_MODE

Set safe mode level: unsafe, safe, server or secure. Disables potentially dangerous macros in
source files, such as include::[]. If not set, the safe mode level defaults to unsafe when
Asciidoctor is invoked using this script.

--safe

Set safe mode level to safe. Enables include directives, but prevents access to ancestor paths of
source file. Provided for compatibility with the asciidoc command. If not set, the safe mode level
defaults to unsafe when Asciidoctor is invoked using this script.

B.2. Document Settings
-a, --attribute=ATTRIBUTE

Define, override or delete a document attribute. Command-line attributes take precedence over
attributes defined in the source file unless the value ends with @.

ATTRIBUTE is normally formatted as a key-value pair, in the form NAME=VALUE. Alternate
acceptable forms are NAME (where the VALUE defaults to an empty string), NAME! (unassigns
the NAME attribute) and NAME=VALUE@ (where VALUE does not override value of NAME
attribute if it’s already defined in the source document). Values containing spaces should be
enclosed in quotes.

This option may be specified more than once.

-b, --backend=BACKEND

Backend output file format: html5, docbook5, docbook45 and manpage are supported out of the
box. You can also use the backend alias names html (aliased to html5) or docbook (aliased to
docbook5). Other values can be passed, but if Asciidoctor cannot resolve the backend to a
converter, it will fail. Defaults to html5.

-d, --doctype=DOCTYPE

Document type: article, book, manpage or inline. Sets the root element when using the docbook
backend and the style class on the HTML body element when using the html backend. The book
document type allows multiple level-0 section titles in a single document. The manpage
document type enables parsing of metadata necessary to produce a man page. The inline
document type allows the content of a single paragraph to be formatted and returned without
wrapping it in a containing element. Defaults to article.
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B.3. Document Conversion
-D, --destination-dir=DIR

Destination output directory. Defaults to the directory containing the source file, or the working
directory if the source is read from a stream. If specified, the directory is resolved relative to the
working directory.

-E, --template-engine=NAME

Template engine to use for the custom converter templates. The gem with the same name as the
engine will be loaded automatically. This name is also used to build the full path to the custom
converter templates. If a template engine is not specified, it will be auto-detected based on the
file extension of the custom converter templates found.

-e, --eruby

Specifies the eRuby implementation to use for executing the custom converter templates written
in ERB. Supported values are erb and erubis. Defaults to erb.

-I, --load-path=DIRECTORY

Add the specified directory to the load path, so that -r can load extensions from outside the
default Ruby load path. This option may be specified more than once.

-n, --section-numbers

Auto-number section titles. Synonym for --attribute sectnums.

-o, --out-file=OUT_FILE

Write output to file OUT_FILE. Defaults to the base name of the input file suffixed with backend
extension. The file is resolved relative to the working directory. If the input is read from
standard input or a named pipe (fifo), then the output file defaults to stdout. If OUT_FILE is -,
then the output file is written to standard output.

-R, --source-dir=DIR

Source directory. Currently only used if the destination directory is also specified. Used to
preserve the directory structure of files converted within this directory in the destination
directory. If specified, the directory is resolved relative to the working directory.

-r, --require=LIBRARY

Require the specified library before executing the processor, using the standard Ruby require.
This option may be specified more than once.

-s, --no-header-footer

Output an embeddable document, which excludes the header, the footer, and everything outside
the body of the document. This option is useful for producing documents that can be inserted
into an external template.

-T, --template-dir=DIR

A directory containing custom converter templates that override one or more templates from
the built-in set. (requires tilt gem)
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If there is a subfolder that matches the engine name (if specified), that folder is appended to the
template directory path. Similarly, if there is a subfolder in the resulting template directory that
matches the name of the backend, that folder is appended to the template directory path.

This option may be specified more than once. Matching templates found in subsequent
directories override ones previously discovered.

B.4. Processing Information
--failure-level=LEVEL

The minimum logging level that triggers a non-zero exit code (failure). If this option is not set
(default: FATAL), the program exits with a status code zero even if warnings or errors have been
logged.

-q, --quiet

Silence warnings.

--trace

Include backtrace information on errors. Not enabled by default.

-v, --verbose

Verbosely print processing information and configuration file checks to stderr.

-t, --timings

Display timings information (time to read, parse and convert).

B.5. Program Information
-h, --help [TOPIC]

Print the help message. Show the command usage if TOPIC is not specified (or not recognized).
Dump the Asciidoctor man page (in troff/groff format) if TOPIC is manpage.

-V, --version

Print program version number.

-v can also be used if no other flags or arguments are present.
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Appendix C: Ruby API Options
Ruby API options

Name Description Default value Allowed values CLI equivalent

:attributes Sets additional
document
attributes, which
override
equivalently-
named attributes
defined in the
document unless
the name or value
ends with @. When
using the Hash
form, a nil value
unsets the
attribute and a
false value soft
unsets the
attribute.

not set Any number of
built-in or user-
defined attributes
in one of the
following formats:

Hash:
{'name'=>'value'}
Array:
['name=value']
String:
'name=value'

-a, --attributes

:backend Selects the
converter to use
(as registered with
this keyword).

html5 html5, docbook5,
docbook45,
manpage, or any
backend
registered through
an active
converter

-b, --backend

:base_dir Sets the base (aka
working) directory
containing the
document and
resources.

The directory of
the source file, or
the working
directory if the
source is read
from a stream.

file path -B, --base-dir
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Name Description Default value Allowed values CLI equivalent

:catalog_assets If true, tells the
parser to capture
images and links
in the reference
table. (Normally
only IDs, footnotes
and indexterms
are included). The
reference table is
available via the
references
property on the
document AST
object.
(Experimental).

false boolean n/a

:converter Specifies a user-
supplied
Asciidoctor::Conve
rter instance, used
in place of the
converter that is
automatically
resolved from the
backend value.

not set Asciidoctor::Conve
rter instance

n/a (Can be
emulated using a
combination of -r
and -b).

:doctype Sets the document
type.

article article, book,
manpage, inline

-d, --doctype

:eruby Specifies the
eRuby
implementation to
use for executing
the converter
templates written
in ERB.

erb erb, erubis -e, --eruby

:extensions A Ruby block that
registers (and
possibly defines)
Asciidoctor
extensions for this
instance of the
processor.

not set A Ruby block that
conforms to the
Asciidoctor
extensions API
(the same code
that would be
passed to the
Extensions.registe
r method).

n/a (Can be
emulated using -r).
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Name Description Default value Allowed values CLI equivalent

:extensions_regist
ry

Overrides the
extensions
registry instance.
Instead of
providing a Ruby
block containing
extensions to
register, this
option lets you
replace the
extension registry
itself, giving you
complete control
over how
extensions are
registered for this
processor.

not set Extensions::Regist
ry instance

n/a

:header_footer If true, add the
document header
and footer (i.e.,
framing) around
the body content
in the output.
NOTE: The default
value for this
option is opposite
of the default
value for the CLI.

false boolean -s, --no-header
-footer

:mkdirs If true, the
processor will
create the
necessary output
directories if they
don’t yet exist.

false boolean n/a (Implicitly
enabled).

:parse If true, the source
is parsed eagerly
(i.e., as soon as the
source is passed to
the load or
load_file API). If
false, parsing is
deferred until the
parse method is
explicitly invoked.

true boolean n/a
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Name Description Default value Allowed values CLI equivalent

:safe Sets the safe mode. :secure :unsafe, :safe,
:server, :secure

-S, --safe-mode

:sourcemap Keeps track of the
file and line
number for each
parsed block.
(Useful for tooling
applications
where the
association
between the
converted output
and the source file
is important).

false boolean n/a

:template_cache If true, enables the
built-in cache used
by the template
converter when
reading the source
of template files.
Only relevant if
the :template_dirs
option is specified.

true boolean n/a

:template_dir Specifies a
directory of Tilt-
compatible
templates to be
used instead of the
default built-in
templates.
Deprecated.
Please use
:template_dirs
instead.

not set file path -T, --template-dir

:template_dirs An array of
directories
containing Tilt-
compatible
converter
templates to be
used instead of the
default built-in
templates.

not set An array of file
paths

-T, --template-dir
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Name Description Default value Allowed values CLI equivalent

:template_engine Template engine
to use for the
custom converter
templates. The
gem with the same
name as the
engine will be
loaded
automatically. This
name is also used
to build the full
path to the custom
converter
templates.

auto
(Set based on the
file extension of
the custom
converter
templates found).

Template engine
name (e.g., slim,
haml, erb, etc.)

-E, --template
-engine

:template_engine_o
ptions

Low-level options
passed directly to
the template
engine.

not set A nested Hash of
options with the
template engine
name as the top-
level key and the
option name as
the second-level
key.

n/a

:timings Capture time
taken to read,
parse, and convert
document.
Internal use only.

not set Asciidoctor::Timin
gs instance

-t, --timings

:to_file The name of the
output file to
write, or true to
use the default
output file
(docname +
outfilesuffix).

not set true, file path -o, --out-file

:to_dir Destination
directory for
output file(s),
relative to
base_dir.

The directory
containing the
source file, or the
working directory
if the source is
read from a
stream.

file path -D, --destination
-dir
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Appendix D: Application Messages
All warning, error, and failure messages emitted by the Asciidoctor CLI (i.e., asciidoctor) are listed
in the table below. These messages are written to the console via stderr (i.e., standard error). Most
messages also apply to the API, though keep in mind they’re written directly to stderr.

Placeholders

<docname>

represents the basename of the source file being processed (e.g., sample.adoc).

<file>

represents a path to the input file or other referenced file.

<uri>

represents a URI being referenced.

<x> or <y>

placeholders for other contextual information in the message.

Categories

ERROR

Errors do not stop conversion, but the output document will almost certainly be wrong.

FAILURE

Failures are fatal; no output document will be produced.

WARNING

Warnings do not stop conversion, but they indicate possible problems, and the output may not
be what you were expecting.

List of Application Messages

Category Message Cause See also

ERROR input file <file> missing or cannot
be read

Check that the file exists and
that the filename is not
misspelled.

Using the
Command Line
Interface

ERROR include file has illegal reference to
ancestor of jail, auto-recovering

The safe mode is restricting
access to an include file
outside of the base directory.

Running
Asciidoctor
Securely

ERROR input file and output file cannot be
the same: <file>

Choose a different output
directory or filename.

ERROR partintro block can only be used
when doctype is book and it's a
child of a part section. Excluding
block content.

Invalid book document
structure.

Book Parts and
Chapters
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Category Message Cause See also

ERROR unmatched macro: endif::<x>[] endif::[] with no unclosed
preceding ifdef::<x>[].

ifdef Directive

ERROR <docname> dropping cell because it
exceeds specified number of
columns

Tables

ERROR <docname> illegal block content
outside of partintro block

Invalid book document
structure.

Book Parts and
Chapters

ERROR <docname> invalid part, must have
at least one section (e.g., chapter,
appendix, etc.)

Invalid book document
structure.

Book Parts and
Chapters

ERROR <docname> malformed manpage
title

Invalid man page document
structure.

Man Pages

ERROR <docname> malformed name
section body

Invalid man page document
structure.

Man Pages

ERROR <docname> maximum include
depth of 64 exceeded

Does your file include itself,
directly or indirectly?

ERROR <docname> mismatched macro:
endif::<x>[], expected endif::<y>[]

ifdef/endif blocks must be
strictly nested.

ifdef Directive

ERROR <docname> name section expected Invalid man page document
structure.

Man Pages

ERROR <docname> name section title must
be at level 1

Invalid man page document
structure.

Man Pages

ERROR <docname> only book doctypes can
contain level 0 sections

Illegal use of a level-0 section
when doctype is not book.

Sections

ERROR <docname> table missing leading
separator, recovering automatically

Check for missing cell
separator characters at the
start of the line.

Tables

FAILED missing converter for backend '<x>'.
Processing aborted. (RuntimeError)

You used -b with an invalid or
missing backend.

FAILED 'tilt' could not be loaded You must have the tilt gem
installed (gem install tilt) to
use custom backend
templates

WARNING abstract block cannot be used in a
document without a title when
doctype is book. Excluding block
content.

Invalid book document
structure.

Abstract

421



Category Message Cause See also

WARNING cannot retrieve contents of <x> at
URI: <uri> (allow-uri-read attribute
not enabled)

Reading from a URI is only
allowed in certain safe modes
and the allow-uri-read
attribute must be passed to
the application.

Include Content
from a URI

WARNING could not retrieve contents of <x> at
URI: <uri>

Web address not found.

WARNING could not retrieve image data from
URI: <uri>

Web address not found. Only
occurs with allow-uri-read
and data-uri. Check the URI.

Include Images
by Full URL

WARNING dropping line containing reference
to missing attribute: <x>

An attribute cannot be
resolved and the attribute-
missing attribute is set to
drop-line.

[catch-a-missing-
or-undefined-
attribute]

WARNING file does not exist or cannot be read:
<file>

You specified a stylesheet (-a
stylesheet=<file>) but <file>
does not exist or is not
readable.

WARNING gem 'thread_safe' is not installed.
This gem is recommended when
registering custom converters.

You have registered a custom
converter, and you have not
installed the thread_safe gem.

WARNING gem 'thread_safe' is not installed.
This gem is recommended when
using custom backend templates.

You are using custom
templates (-T <template_dir>),
but you have not installed the
thread_safe gem.

WARNING image to embed not found or not
readable: <file>

You used :data-uri: but the
file could not be found.

Managing Images

WARNING include file not readable: <file> You do not have permission
to access the file.

AsciiDoc vs non-
AsciiDoc files

WARNING input path <file> is a <x>, not a file The path is not a file (perhaps
it is a socket or a block
device).

AsciiDoc vs non-
AsciiDoc files

WARNING optional gem 'asciimath' is not
installed. Functionality disabled.

asciimath is one of the
libraries used for equations.

Equations and
Formulas

WARNING optional gem 'coderay' is not
installed. Functionality disabled.

CodeRay is used for source
code highlighting.

CodeRay

WARNING skipping reference to missing
attribute: <x>

An attribute cannot be
resolved and the attribute-
missing attribute is set to skip.

[catch-a-missing-
or-undefined-
attribute]

WARNING tables must have at least one body
row

Tables
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Category Message Cause See also

WARNING tag '<x>' not found in include file:
<file>

You tried to include by tagged
region, but the included
document does not have that
tag.

Select Portions of
a Document to
Include

WARNING <docname>: id assigned to <type>
already in use: <id>

<id> is a duplicate ID,
meaning it has already been
assigned to a node of <type>
(e.g., section, block, anchor). If
you don’t see the problem in
<docname>, check that the
duplicate ID isn’t coming
from a file which is being
included.

WARNING <docname> callout list item index:
expected <x> got <y>

Callouts are expected to be in
numerical order, just like any
ordered list.

Callouts

WARNING <docname> include <x> not
readable: <y>

If <y> is a file, do you have
read permissions for it? If it is
a URI and -a allow-uri-read
is set, does it exist?

WARNING <docname> include file not found:
<file>

Probably a typo or missing
file. If not, make sure you
understand the search
process.

Include
Directive, File
resolution

WARNING <docname> invalid empty <x>
detected in style attribute

The first positional attribute
in the block attributes could
not be parsed.

Options

WARNING <docname> invalid style for <x>
block: <y>

You have added a custom
style to a block, but you
haven’t registered a custom
block extension to handle it.

WARNING <docname> invalid style for
paragraph: <x>

You have a line [xxx] before a
paragraph, but xxx isn’t one of
the built-in styles.

Style

WARNING <docname> list item index: expected
<x>, got <y>

You gave explicit numbers on
an ordered list, but they were
not sequential. Asciidoctor
renumbers them for you, and
gives this warning.

Ordered Lists

WARNING <docname> multiple ids detected in
style attribute

Multiple IDs cannot be
specified in the block style
(e.g., [#cat#dog]).

Id
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Category Message Cause See also

WARNING <docname> no callouts refer to list
item <x>

The callout is missing or not
recognized. In source listings,
is the callout the last thing on
the line?

Callouts

WARNING <docname> section title out of
sequence

Invalid document structure.
Check section levels.

Sections
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